![]() | This article includes a list of general references, but it lacks sufficient corresponding inline citations .(August 2010) |
Vibratory Stress Relief, often abbreviated VSR, is a non-thermal stress relief method used by the metal working industry to enhance the dimensional stability and mechanical integrity of castings, forgings, and welded components, chiefly for two categories of these metal workpieces:
This stress is called residual stress , [1] because it remains in a solid material after the original cause of the stress has been removed. Residual stresses can occur through a variety of mechanisms including inelastic (plastic) deformations, temperature gradients (during thermal cycle), or structural changes (phase transformation). For example, heat from welding may cause localized expansion, which is taken up during welding by either the molten metal or the placement of parts being welded. When the finished weldment cools, some areas cool and contract more than others, leaving residual stresses. These stresses often lead to distortion or warping of the structure during machining, assembly, testing, transport, field-use or over time. In extreme cases, residual stress can cause structural failure.
Almost all vibratory stress relief equipment manufacturers and procedures use the workpiece's own resonant frequency to boost the loading experienced by induced vibration, so to maximize the degree of stress relief achieved. Some equipment and procedures are designed to operate near, but not at, workpiece resonances (perhaps to extend equipment life). Although, independent research [2] has consistently shown resonant frequency vibration to be more effective. See references 4, 6, and 9.
The effectiveness of vibratory stress relief is highly questionable. [3] In general, the strain amplitudes achieved during vibratory stress relief are too low to exceed the critical stress required to activate mechanical relaxation during the induced low amplitude high cycle fatigue excitation of the transducer vibrations. If the strain amplitudes were increased to a level sufficient to cause instability in the residual stresses, fatigue damage would occur. [4] [5] For most applications, conventional stress relief methodologies should be applied to components that require the reduction of residual stresses. [6]
Effective vibratory stress relief treatment results from a combination of factors:
Each of these changes, which often combine, i.e., peak growth AND shifting, is consistent with a lowering of the rigidity of the workpiece. The workpiece rigidity is inflated by the presence of residual stress. In the example below, which depicts a common resonance pattern change that occurs during vibratory stress relief, the large peak grew by 47%, while simultaneously shifting to the left 28-RPM, which is less than 0.75%. See Figure 4.
The equipment used to perform this stress relief had vibrator speed regulation of ± 0.02%, and speed increment fine-tuning of 1-RPM, which allowed even subtle shifting of the peaks to be accurately tracked to their final, stable locale.
The pattern of change, i.e., how quickly the peaks grow and shift, is faster at the beginning of vibration treatment: As treatment continues, the rate of change decreases, eventually resulting in a new, stable resonance pattern. Stability of this new resonance pattern indicates that dimensional stability of the workpiece has been achieved.
The power plot is useful in both positioning and orienting the vibrator, and when adjusting the vibrator unbalance. Poor or inappropriate vibrator locations or orientations, or excessive vibrator unbalance settings, cause large peaks in the power plot. Use of higher-powered vibrator motors (above 2-kW) provides more "head-room" for peaks in power to be tolerated, and treatment to take place, which was the case here: The power peak at ≈ 3700-RPM was only half of the vibrator motor's 2.3-kW power capacity (top of the power scale).
A Pre-Treatment Scan, which functions as a base-line, is first recorded in green. The operator uses this green data set to tune upon the resonances, and monitor the growth and shifting of the resonance peaks. After peak growth and shifting have subsided, a Post-Treatment Scan is made (red). This data is superimposed on the original, green, Pre-Treatment Scan data, documenting the changes in resonance pattern. The stress relief treatment resulted in 47% growth of the original, large peak, while it shifted to the left 28-RPM (less than 0.75%).
After stress relief treatment, the braces (rust-colored, structural beams), which are used to maintain the desired shape during welding, were removed. The spacing between the two "arms" remained the same; no change was detectable (measured to 1/32" or less than 1 mm), and the spacing remained so throughout assembly, testing (to 60 ton test loads), transport, and installation.
VSR is not accepted by the Engineering community at large as a viable method of relaxing or reducing residual stresses in components that require it. For general use, conventional residual stress relaxation methodologies are recommended. [9]
Historically, the first type of stress relief was performed on castings by storing them outside for months or even years. This was referred to as curing, a term used for long-term storage of freshly hewn wood. Fresh castings were referred to as being green, meaning, they were prone to distortion during precision machining, just as green wood bows during cutting.
Later, thermal stress relief (TSR) was developed to alleviate the lengthy time requirements of curing. It has been known for many years, however, that TSR has limitations or shortcomings, specifically:
Metal components, whose function would be enhanced by stress relief, and fall into one or more of the above categories, are strong candidates for VSR for quality-related reasons.
Further, there is a strong economic incentive to use vibratory stress relief on large workpieces, since stress relief using a furnace (thermal stress relief or TSR) is highly energy-intensive; consuming much natural gas, and hence, producing much CO2. The cost of TSR is approximately proportional to a metal component's weight or overall size, estimated to be US$2,500 for the structure pictured, plus transportation costs, which might involve special transport permits, to and from a furnace. VSR Treatment would cost a company owning appropriate equipment less than 15% as much ( ≈ $400 ) as TSR Treatment, chiefly amortization of equipment investment plus labor, and a modest amount of electrical consumption, and treatment would take less than two hours, with no transport required. However, the lack of independent data to show that this technique is effective may mean that even that lesser investment is not of any value, so use of VSR should evaluated very carefully before proceeding.
Resonance is the phenomenon, pertaining to oscillatory dynamical systems, wherein amplitude rises are caused by an external force with time-varying amplitude with the same frequency of variation as the natural frequency of the system. The amplitude rises occur in resonance owing to the fact that applied external forces at the natural frequency entail a net increase in mechanical energy of the system.
Shielded metal arc welding (SMAW), also known as manual metal arc welding, flux shielded arc welding or informally as stick welding, is a manual arc welding process that uses a consumable electrode covered with a flux to lay the weld.
Nondestructive testing (NDT) is any of a wide group of analysis techniques used in science and technology industry to evaluate the properties of a material, component or system without causing damage. The terms nondestructive examination (NDE), nondestructive inspection (NDI), and nondestructive evaluation (NDE) are also commonly used to describe this technology. Because NDT does not permanently alter the article being inspected, it is a highly valuable technique that can save both money and time in product evaluation, troubleshooting, and research. The six most frequently used NDT methods are eddy-current, magnetic-particle, liquid penetrant, radiographic, ultrasonic, and visual testing. NDT is commonly used in forensic engineering, mechanical engineering, petroleum engineering, electrical engineering, civil engineering, systems engineering, aeronautical engineering, medicine, and art. Innovations in the field of nondestructive testing have had a profound impact on medical imaging, including on echocardiography, medical ultrasonography, and digital radiography.
Metalworking is the process of shaping and reshaping metals to create useful objects, parts, assemblies, and large scale structures. As a term it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges down to precise engine parts and delicate jewelry.
A drill string on a drilling rig is a column, or string, of drill pipe that transmits drilling fluid and torque to the drill bit. The term is loosely applied to the assembled collection of the smuggler pool, drill collars, tools and drill bit. The drill string is hollow so that drilling fluid can be pumped down through it and circulated back up the annulus.
Induction heating is the process of heating electrically conductive materials, namely metals or semi-conductors, by electromagnetic induction, through heat transfer passing through an inductor that creates an electromagnetic field within the coil to heat up and possibly melt steel, copper, brass, graphite, gold, silver, aluminum, or carbide.
Ultrasonic welding is an industrial process whereby high-frequency ultrasonic acoustic vibrations are locally applied to work pieces being held together under pressure to create a solid-state weld. It is commonly used for plastics and metals, and especially for joining dissimilar materials. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. When used to join metals, the temperature stays well below the melting point of the involved materials, preventing any unwanted properties which may arise from high temperature exposure of the metal.
Drilling is a cutting process where a drill bit is spun to cut a hole of circular cross-section in solid materials. The drill bit is usually a rotary cutting tool, often multi-point. The bit is pressed against the work-piece and rotated at rates from hundreds to thousands of revolutions per minute. This forces the cutting edge against the work-piece, cutting off chips (swarf) from the hole as it is drilled.
Carburizing, or carburising, is a heat treatment process in which iron or steel absorbs carbon while the metal is heated in the presence of a carbon-bearing material, such as charcoal or carbon monoxide. The intent is to make the metal harder and more wear resistant. Depending on the amount of time and temperature, the affected area can vary in carbon content. Longer carburizing times and higher temperatures typically increase the depth of carbon diffusion. When the iron or steel is cooled rapidly by quenching, the higher carbon content on the outer surface becomes hard due to the transformation from austenite to martensite, while the core remains soft and tough as a ferritic and/or pearlite microstructure.
Shot peening is a cold working process used to produce a compressive residual stress layer and modify the mechanical properties of metals and composites. It entails striking a surface with shot with force sufficient to create plastic deformation.
In materials science and solid mechanics, residual stresses are stresses that remain in a solid material after the original cause of the stresses has been removed. Residual stress may be desirable or undesirable. For example, laser peening imparts deep beneficial compressive residual stresses into metal components such as turbine engine fan blades, and it is used in toughened glass to allow for large, thin, crack- and scratch-resistant glass displays on smartphones. However, unintended residual stress in a designed structure may cause it to fail prematurely.
Mechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration closer than it does other frequencies. It may cause violent swaying motions and potentially catastrophic failure in improperly constructed structures including bridges, buildings and airplanes. This is a phenomenon known as resonance disaster.
A photoelastic modulator (PEM) is an optical device used to modulate the polarization of a light source. The photoelastic effect is used to change the birefringence of the optical element in the photoelastic modulator.
A vibrator is a mechanical device to generate vibrations. The vibration is often generated by an electric motor with an unbalanced mass on its driveshaft.
In ultrasonic machining, welding and mixing, a sonotrode is a tool that creates ultrasonic vibrations and applies this vibrational energy to a gas, liquid, solid or tissue.
Mechanical plating, also known as peen plating, mechanical deposition, or impact plating, is a plating process that imparts the coating by cold welding fine metal particles to a workpiece. Mechanical galvanization is the same process, but applies to coatings that are thicker than 0.001 in (0.025 mm). It is commonly used to overcome hydrogen embrittlement problems. Commonly plated workpieces include nails, screws, nuts, washers, stampings, springs, clips, and sintered iron components.
Ultrasonic impact treatment (UIT) is a metallurgical processing technique, similar to work hardening, in which ultrasonic energy is applied to a metal object. This technique is part of the High Frequency Mechanical Impact (HFMI) processes. Other acronyms are also equivalent: Ultrasonic Needle Peening (UNP), Ultrasonic Peening (UP). Ultrasonic impact treatment can result in controlled residual compressive stress, grain refinement and grain size reduction. Low and high cycle fatigue are enhanced and have been documented to provide increases up to ten times greater than non-UIT specimens.
Rotating unbalance is the uneven distribution of mass around an axis of rotation. A rotating mass, or rotor, is said to be out of balance when its center of mass is out of alignment with the center of rotation. Unbalance causes a moment which gives the rotor a wobbling movement characteristic of vibration of rotating structures.
Tumbler screening is a separation method that uses three-dimensional elliptical movement to separate very fine particles from larger ones.
Vibration welding refers to a process in which two workpieces are brought in contact under pressure, and a reciprocating motion (vibration) is applied along the common interface in order to generate heat. The resulting heat melts the workpieces, and they become welded when the vibration stops and the interface cools. Most machinery operates at 120 Hz, although equipment is available that runs between 100–240 Hz. Vibration can be achieved either through linear vibration welding, which uses a one dimensional back and forth motion, or orbital vibration welding which moves the pieces in small orbits relative to each other. Linear vibration welding is more common due to simpler and relatively cheaper machinery required.
PDF D. Rao, J. Ge, and L. Chen, Vibratory Stress Relief in the Manufacturing the Rails of a Maglev System, J. of Manufacturing Science and Engineering, 126, Issue 2, 388-391 (2004)
PDF B.B. Klauba, C.M. Adams, J.T. Berry, Vibratory Stress Relief: Methods Used to Monitor and Document Effective Treatment, A Survey of Users, and Directions for Further Research, Proc. of ASM, 7th International Conference: Trends in Welding Research 601-606 (2005)
PDF Y. Yang, G. Jung, and R. Yancey, Finite Element Modeling of Vibratory Stress Relief after Welding, Proc of ASM, 7th International Conference; Trends in Welding Research 547-552 (2005)