Vijaykrishnan Narayanan | |
---|---|
Nationality | American |
Alma mater | University of South Florida University of Madras |
Awards | ACM Fellow (2015) IEEE Fellow (2011) |
Scientific career | |
Fields | Computer Engineering, Computer Architecture, Electronic Design Automation |
Institutions | Pennsylvania State University |
Doctoral advisor | Nagarajan Ranganathan |
Vijaykrishnan Narayanan [1] is the A. Robert Noll Chair Professor of Computer Science and Engineering and Electrical Engineering, Evan Pugh University Professor [2] and the Associate Dean for Innovation at The Pennsylvania State University. [3] He also serves as the director of the Penn State Center for Artificial Intelligence Foundations and Engineering Systems, [4] and as the interim director of limited submission for the University's Office of the Senior Vice President of Research. [5]
Joining Penn State in 1998 as an assistant professor, Vijay has become an international expert in computer architecture. His research and teaching interests encompass embedded and mobile computing systems design, power- and reliability-aware design, emerging computing technologies, application-specific systems, on-chip networks, and design automation.
He received his bachelor's degree in Computer Science and Engineering from the University of Madras, India, in 1993, and his Ph.D. in Computer Science and Engineering from the University of South Florida, USA, in 1998. Vijay is a co-director of the Microsystems Design Lab and a Fellow of the National Academy of Inventors, IEEE, and ACM
Vijaykrishnan Narayanan received his B.E.(Bachelor of Engineering) in Computer Science and Engineering from University of Madras in 1993, and his Ph.D. in Computer Science and Engineering from the University of South Florida in 1998, respectively.
Vijaykrishnan Narayanan joined the faculty of the Pennsylvania State University as an assistant professor in 1998. He was promoted to the rank of full professor in 2007. Vijaykrishnan Narayanan has worked in the area of power-aware design. With colleagues at Penn State, he developed architectural level power simulators, SimplePower and SoftWatt. He has developed application-specific architectures, including the design, implementation, and field-testing of board level designs for DARPA DESA and DARPA Neovision2 programs.
Dr. Narayanan's research focuses on power-aware computer systems. Excessive power consumption is a key limiter to the design of modern computer systems ranging from large data centers to tiny and pervasive embedded internet of things. His research has addressed the power challenges in several intersecting domains such as the design of power-efficient computing systems, the design of application specific processors, the design of multicore architectures using emerging technologies like 3D stacking and nanotechnology, and the development of methodologies to understand interplay between performance, power and reliability. His election as Fellow of IEEE and ACM, the two major professional societies in Electrical Engineering and Computer Science, respectively, cite his contributions to power-aware computing.
Dr. Narayanan developed open-access tools and simulation models (downloaded by 100’s) for designing energy-efficient computing systems. He co-led the design of the Simplepower tool, which was the first input-sensitive, architectural-level power estimation framework meaning that it could be used for early-stage design exploration, even before logic design and circuit layout. His subsequent work provided deep insights to the power contribution of individual components such as the clock network (the 2002 IEEE Transactions on VLSI best paper), His work helped reveal the important role of software on power optimization resulting in joint innovations with Industry such as the first energy-efficient embedded Java virtual machines including energy-aware memory management and garbage collection techniques (with Sun Microsystems) and transaction-level power modeling (with IBM). In work that received the ASPDAC Ten-Year Retrospective Most Influential Paper Award in 2012, Vijay proposed new techniques for controlling runtime leakage power. His work developed the first (Computer Aided Design) techniques to address leakage power reduction in FPGAs (with Xilinx, the leading FPGA company) and received a most significant retrospective award in 25 years of Field programmable logic conference.
With concerns of slowing down of CMOS transistor size (down) scaling, Narayanan's work started exploring two new directions - one on design of domain specific acceleration and another on design using emerging device technologies for memory and compute. Since emerging devices are often not drop-in replacements for CMOS or offer unique characteristics to leverage at higher levels of abstraction, Narayanan’s unique cross layer explorations spanning the entire computing stack – devices, circuits, architecture, and systems was recognized with the IEEE Computer Society Technical Achievement Award. His work is shaping industry directions through contributions to Semiconductor Industry (SRC/SIA) decadal planning, and NIST/SRC benchmarking efforts. The National Security Agency recognized his effort for promoting excellence in scientific research and the National Science Foundation highlighted his research contributions twice in its annual report. His contributions to design of non-volatile processors for energy-harvesting systems was named an IEEE Micro Top Pick.
Dr. Narayanan’s research has involved extensive interdisciplinary and multi-institutional collaborations. In the DARPA Neovision program, his team demonstrated brain-inspired vision systems that reduced power consumption of contemporary state-of-the-art by two orders of magnitude. Students trained in this project, currently lead commercial AI system design in Google, IBM, Intel and Meta. The commercial and societal impact of embedded vision systems for commercial (shopper insights), defense (autonomous weapons) and societal impact (assistive technologies) developed by Narayanan are cited in his election as Fellow of National Academy of Inventors. His work on an NSF expeditions-in-computing project resulted in simultaneous advances in computer vision, hardware, human-machine interface and neuroscience to enable a new generation of assistive vision technologies that enable independent shopping for persons with visual impairments. Narayanan’s recent work involves partnership with leading semiconductor companies (Intel, IBM. Global Foundries, Samsung and Micron) towards replacing the 50 year von Neumann computing paradigm that treats memory and processing distinct through novel processing-in-memory systems.
In qualitative metrics, Dr. Narayanan has an H-index of eighty-six with 29133 citations. He has received seven best paper awards and two “test-of-time” awards
Dr. Vijaykrishnan Narayanan is an accomplished academic and researcher in the fields of electronic design automation (EDA), VLSI design, and computer architecture. He has made significant contributions through his leadership roles in various technical committees and editorial positions.
Narayanan has served as the elected chair of the ACM Special Interest Group on Design Automation, overseeing technical conferences in EDA. His editorial roles include editor-in-chief of IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2014-2017) and founding co-editor-in-chief of the ACM Journal on Emerging Technologies in Computer Systems (2003-2009). Additionally, he has been an associate editor for prestigious journals such as IEEE Transactions on VLSI and the Journal of Low Power Electronics .
In his conference leadership roles, Narayanan has served on advisory and executive committees, including for the Design Automation Conference and the IEEE Computer Society Annual Symposium on VLSI. He co-chaired the International Symposium on Low Power Electronics and Design and has been involved in the steering committees of various conferences on VLSI and EDA.
Narayanan has contributed as an expert reviewer for numerous international research funding agencies, including the National Research Foundation (Singapore), European Union, U.S. Department of Energy, and the National Science Foundation. He also co-led workshops on hardware support for Java microarchitectures, influencing technology now prevalent in mobile and embedded devices.
His service to the academic and research community includes roles in IEEE, such as chairing the IEEE CS Technical Committee on VLSI and being a member of the IEEE CEDA Publications Board.
Total Number of Students Supervised: 54 Ph.D. 72 Masters students
Students have won prestigious fellowships during their course of graduate study under Narayanan including IBM fellowship, Alfred Sloan Fellowship, GEM Scholarship and CAC Fellowship. Two of his advisees won the Best Dissertation Award, a global recognition given by the European Design Automation Association. His former students have been successful in academia, entrepreneurship and industry (examples – Tenured Associate Professor (KAIST, Korea;), Principal Engineers (Samsung) and successful entrepreneurs (EDAplayground). He has been a major driver for diversity with multiple African-American and women students that he has mentored. His students won the 2016 IEEE Computer Society Global Student Competition for their entry on ‘Computer Vision for assisting Visually Impaired
A list of all his awards follows.
The Design Automation Conference, or DAC, is an annual event, a combination of a technical conference and a trade show, both specializing in electronic design automation (EDA).
Jingsheng Jason Cong is a Chinese-born American computer scientist, educator, and serial entrepreneur. He received his B.S. degree in computer science from Peking University in 1985, his M.S. and Ph. D. degrees in computer science from the University of Illinois at Urbana-Champaign in 1987 and 1990, respectively. He has been on the faculty in the Computer Science Department at the University of California, Los Angeles (UCLA) since 1990. Currently, he is a Distinguished Chancellor’s Professor and the director of Center for Domain-Specific Computing (CDSC).
Giovanni De Micheli is a research scientist in electronics and computer science. He is credited for the invention of the Network on a Chip design automation paradigm and for the creation of algorithms and design tools for Electronic Design Automation (EDA). He is Professor and Director of the Integrated Systems laboratory at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. Previously, he was Professor of Electrical Engineering at Stanford University. He was Director of the Electrical Engineering Institute at EPFL from 2008 to 2019 and program leader of the Swiss Federal Nano-Tera.ch program. He holds a Nuclear Engineer degree, a M.S. and a Ph.D. degree in Electrical Engineering and Computer Science under Alberto Sangiovanni-Vincentelli.
Randal E. Bryant is an American computer scientist and academic noted for his research on formally verifying digital hardware and software. Bryant has been a faculty member at Carnegie Mellon University since 1984. He served as the Dean of the School of Computer Science (SCS) at Carnegie Mellon from 2004 to 2014. Dr. Bryant retired and became a Founders University Professor Emeritus on June 30, 2020.
The International Conference on Computer-Aided Design (ICCAD) is a yearly conference about electronic design automation. From the start in 1982 until 2014 the conference was held in San Jose, California. It is sponsored by the IEEE Circuits and Systems Society, Computer-Aided Design Technical Committee (CANDE), the IEEE Council on Electronic Design Automation (CEDA), and SIGDA, and in cooperation with the IEEE Electron Devices Society and the IEEE Solid State Circuits Society.
Design, Automation & Test in Europe, or DATE is a yearly conference on the topic of electronic design automation. It is typically held in March or April of each year, alternating between France and Germany. It is sponsored by the SIGDA of the Association for Computing Machinery, the Electronic System Design Alliance, the European Design and Automation Association (EDAA), and the IEEE Council on Electronic Design Automation (CEDA). Technical co-sponsors include ACM SIGBED, the IEEE Solid-State Circuits Society (SSCS), IFIP, and the Institution of Engineering and Technology (IET).
Nikil Dutt is a Distinguished Professor of Computer Science at University of California, Irvine, United States. Professor Dutt's research interests are in embedded systems, electronic design automation, computer architecture, optimizing compilers, system specification techniques, distributed systems, and formal methods.
John Patrick Hayes is an Irish-American computer scientist and electrical engineer, the Claude E. Shannon Chair of Engineering Science at the University of Michigan. He supervised over 35 doctoral students, coauthored seven books and over 340 peer-reviewed publications. His Erdös number is 2.
Mary Jane Irwin is an Emerita Evan Pugh Professor in the Department of Computer Science and Engineering at Pennsylvania State University. She has been on the faculty at Penn State since 1977. She is an international expert in computer architecture. Her research and teaching interests include computer architecture, embedded and mobile computing systems design, power and reliability aware design, and emerging technologies in computing systems.
Massoud Pedram is an Iranian American computer engineer noted for his research in green computing, energy storage systems, low-power electronics and design, electronic design automation and quantum computing. In the early 1990s, Pedram pioneered an approach to designing VLSI circuits that considered physical effects during logic synthesis. He named this approach layout-driven logic synthesis, which was subsequently called physical synthesis and incorporated into the standard EDA design flows. Pedram's early work on this subject became a significant prior art reference in a litigation between Synopsys Inc. and Magma Design Automation.
Rob A. Rutenbar is an American academic noted for contributions to software tools that automate analog integrated circuit design, and custom hardware platforms for high-performance automatic speech recognition. He is Senior Vice Chancellor for Research at the University of Pittsburgh, where he leads the university's strategic and operational vision for research and innovation.
Saraju Mohanty is an Indian-American professor of the Department of Computer Science and Engineering, and the director of the Smart Electronic Systems Laboratory, at the University of North Texas in Denton, Texas. Mohanty received a Glorious India Award – Rich and Famous NRIs of America in 2017 for his contributions to the discipline. Mohanty is a researcher in the areas of "smart electronics for smart cities/villages", "smart healthcare", "application-Specific things for efficient edge computing", and "methodologies for digital and mixed-signal hardware". He has made significant research contributions to security by design (SbD) for electronic systems, hardware-assisted security (HAS) and protection, high-level synthesis of digital signal processing (DSP) hardware, and mixed-signal integrated circuit computer-aided design and electronic design automation. Mohanty has been the editor-in-chief (EiC) of the IEEE Consumer Electronics Magazine during 2016-2021. He has held the Chair of the IEEE Computer Society's Technical Committee on Very Large Scale Integration during 2014-2018. He holds 4 US patents in the areas of his research, and has published 500 research articles and 5 books. He is ranked among top 2% faculty around the world in Computer Science and Engineering discipline as per the standardized citation metric adopted by the Public Library of Science Biology journal.
David Atienza Alonso is a Spanish/Swiss scientist in the disciplines of computer and electrical engineering. His research focuses on hardware‐software co‐design and management for energy‐efficient and thermal-aware computing systems, always starting from a system‐level perspective to the actual electronic design. He is a full professor of electrical and computer engineering at the Swiss Federal Institute of Technology in Lausanne (EPFL) and the head of the Embedded Systems Laboratory (ESL). He is an IEEE Fellow (2016), and an ACM Fellow (2022).
Subhasish Mitra is an American Computer Science and Electrical Engineering professor at Stanford University. He directs the Stanford Robust Systems Group, leads the Computation Focus Area of the Stanford SystemX Alliance, and is a member of the Wu Tsai Neurosciences Institute. His research ranges across Robust Computing, NanoSystems, Electronic Design Automation (EDA), and Neurosciences. He teaches EE 108 - digital systems design at stanford.
Anand Sivasubramaniam is Distinguished Professor of Computer Science and Engineering at The Pennsylvania State University. He is well known for his work in computer architecture, computer systems, data centers and computer systems power management.
Soha Hassoun is American computer scientist. She is Professor and Past Chair (2013–2016) of the Department of Computer Science at Tufts University. Hassoun's interests lie at the intersection of machine learning and systems biology.
Prabhat Mishra is a Professor in the Department of Computer and Information Science and Engineering at the University of Florida. Prof. Mishra's research interests are in hardware security, quantum computing, embedded systems, system-on-chip validation, formal verification, and machine learning.
Sherief Reda is a computer scientist and engineer. He is currently a professor at the School of Engineering and Computer Science Department, Brown University, and a principal research scientist at Amazon Supply Chain Optimization Technology team. He has been elevated to a Fellow of the IEEE for his contributions to energy-efficient and approximate computing.
Luca P. Carloni is a professor and chair of the Department of Computer Science at Columbia University in the City of New York.. He has been on the faculty at Columbia since 2004. He is an international expert on electronic computer-aided design.
Sharad Malik is an Indian-American computer scientist working in formal methods, electronic design automation, and computer architecture. He is currently the George Van Ness Lothrop Professor of Engineering in the Electrical and Computer Engineering Department at Princeton University.