Volcanoes of Mozambique

Last updated

Monte Muambe is a volcanic caldera located south-east of Moatize in Tete Province of Mozambique.

Contents

Morphologically, Monte Muambe is a ring-shaped feature, composed of Karroo sandstones which rise from peneplain plateau at altitude between 250 m in the south and 300 m in the north. The rim of the caldera forms a well-developed circular ridge of altered and indurated Karroo sandstones (gritstones) rising approximately 500 m above the plain of unaltered Karroo sediments. Due to hardness of altered Karroo sediments, after continuous, long-time erosion, Monte Muambe at present is a well-developed circular ridge (caldera), basin-shaped, and steep-sided with a crater-like depression inside. The core of the circular structure is 200 m lower than its periphery.[ citation needed ]

Geology of adjacent area

The region of Monte Muambe is situated on the southern margin of the Tete gabbro-diorite complex of the Precambrian age, in a depression filled in the Mesozoic by sediments and volcanic activity products of the Karroo System.[ citation needed ]

Karroo System

Karroo sediments are in a tectonic relationship with older rocks. The boundary of the Tete gabbro-diorite complex is E -W striking dislocation. These sediments form an east-west trending belt, gently dipping to southeast in the sedimentary formation and volcanic rocks of Monte Muambe area.

The succession normally progresses from north to south. From the oldest formations in the north as represented by Serie Tilitos ad Serie Produtiva with coal seams (Beaufort), sedimentation progressed continuously to fossiliferous sandstones, often cross-bedded, including clay-marly beds (Stromberg) - which closed the Karroo sedimentation.[ citation needed ]

Volcanic formation of Stromberg Series consists of amygdaloid basalts plates in the form of lava flows over Karroo sandstones, and dolerite in the form of dykes.

Post-Karroo deposits are commonly represented by sandstones and conglomerates with interstratified Mesozoic or younger volcanic rocks. In the Monte Muambe region they are recognized as rocks of Lupata Series.

This geologic formation is divided into Lower Lupata Sandstones and Upper Lupata Series. Older sandstones consider to include also rhyolite and younger include alkaline rocks.[ citation needed ]

Only the Upper Lupata Sandstones are developed in Monte Muambe region. The formation consists of two members: clastic, mostly feldspathic various grained sandstones, and volcano erupted - alkali lavas. The intrusive members are syenite and carbonatite.[ citation needed ]

The complete sedimentary sequence is separated in Lupata region, about 10 km southeast of Monte Muambe, in Chincongolo area, near to Lupata Gorge, and consists of Upper Lupata Sandstones formation, intrusive rocks (syenite), carbonatites (intrusive and effusive products) and alkaline extrusive rocks. According to field findings geological units in the region as follows:

1. Coarse-grained and conglomeratic sandstones which transgressive overlain basalts, gently dipping to the south. 2. Agglomerates which developed from sandstones are composed mainly of fragments of Karroo sediments, volcanic carbonatite material, and syenite fragments - cemented with carbonate. The pyroclastic series base consists of agglomerate with carbonatite volcanic bombs and lapilii. 3. Alkali lava flows which cover sedimentary sequence forming tabular igneous bodies elongated to south, represented by rhomb porphyry trachytes and hyalotrahytes

Summarized the major events and characteristics of Lupata Series their time of extent was from Lower Jurassic to Lower Cretaceous, and from that time Monte Muambe, as a part of volcanic system of the East African Rift, represent carbonatite extinct volcano.

Carbonatitic Complex

During the Lupate Series formation, in the phase of alkali magmatism, syenite and later carbonatite were also intruded.

The concave bottom of caldera, about 5 km in diameter, consists of carbonatite, agglomerate, tuff, feldspathic rocks (fenites) and basic dykes. The bottom periphery, 0.5 km wide, is mostly built of feldspathic rocks and little or no carbonatite.[ citation needed ]

The central circular part of highly dissected, craggy hills of carbonatite is asymmetrical and about 200 m lower than Karroo ridge. It is composed of relics of carbonatite intrusion, now appearing as carbonatite ring and subsided central part. The carbonatite ring is characterized by vertical scarps on inner side, with surface which often shows irregular knots, nodes, or veins of more resistant (silicate) material. Laterite covers are formed on both sides of carbonatite ring with accumulation of residual ferruginous-manganese minerals. [ citation needed ]

Carbonatitic rocks are characterized by considerable variation, or great variety of textures, while the mineral composition is quite uniform and chiefly independent of texture. According to texture of carbonatite, can be distinguished: hypidiomorphic granular, medium-grained, pseudoporphyric and trachytic.[ citation needed ]

The most abundant are carbonatites with granular texture, while porphyric and trachytoid carbonatites are much less abundant. Porphyric carbonatite are formed by fast cooling of semi-crystallized magma, or in contact with cool environment. The primary crystallized and fast crystallized calcites form phenocrysts and fine-grained groundmass, respectively. The slower cooled magma obtained granular texture.

Carbonatitic magma was probably separated during the differentiation and crystallization of syenites and alkali basic rocks. The primary silicate magma was enriched with alkalies, carbon-dioxide, calcium and deficient with silica. During the alkali syenite crystallization, the carbonate portion of silicate magma was separated forming carbonatitic magma. Alkalies were already linked with feldspars and feldspathoids both in alkali syenites and in metasomatic fenites to be contained by residual carbonate. That is why carbonatites contained very low alkalies. The carbonatitic magma, after the melt separation, was intruded in Karroo sandstones, or earlier formed fenites.[ citation needed ]

The bottom periphery of caldera, 0.5 km wide, is mostly built of feldspathic rocks (fenites), and little or no carbonatite. Under the name the fenites, several types of rocks are separated: fenised sandstones, syenite-fenite, syenite-fenite with nepheline, and feldspar breccias. The fenised sandstones and syenite-fenite form aureoles around carbonatites. The main characteristic for all fenites is metasomatic substitution and replacement of primary constituents by K-feldspar minerals.[ citation needed ]

At the end of carbonatitic volcano activity, hydrothermal stage have led to the formation of exploitable mineral resources, both in carbonatites and fenites. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Sandstone</span> Type of sedimentary rock

Sandstone is a clastic sedimentary rock composed mainly of sand-sized silicate grains. Sandstones comprise about 20–25% of all sedimentary rocks.

<span class="mw-page-title-main">Feldspar</span> Group of rock-forming minerals

Feldspar is a group of rock-forming aluminium tectosilicate minerals, also containing other cations such as sodium, calcium, potassium, or barium. The most common members of the feldspar group are the plagioclase (sodium-calcium) feldspars and the alkali (potassium-sodium) feldspars. Feldspars make up about 60% of the Earth's crust, and 41% of the Earth's continental crust by weight.

<span class="mw-page-title-main">Syenite</span> Intrusive igneous rock

Syenite is a coarse-grained intrusive igneous rock with a general composition similar to that of granite, but deficient in quartz, which, if present at all, occurs in relatively small concentrations. It is considered a granitoid. Some syenites contain larger proportions of mafic components and smaller amounts of felsic material than most granites; those are classed as being of intermediate composition.

<span class="mw-page-title-main">Dacite</span> Volcanic rock intermediate in composition between andesite and rhyolite

Dacite is a volcanic rock formed by rapid solidification of lava that is high in silica and low in alkali metal oxides. It has a fine-grained (aphanitic) to porphyritic texture and is intermediate in composition between andesite and rhyolite. It is composed predominantly of plagioclase feldspar and quartz.

<span class="mw-page-title-main">Trachyte</span> Extrusive igneous rock

Trachyte is an extrusive igneous rock composed mostly of alkali feldspar. It is usually light-colored and aphanitic (fine-grained), with minor amounts of mafic minerals, and is formed by the rapid cooling of lava enriched with silica and alkali metals. It is the volcanic equivalent of syenite.

<span class="mw-page-title-main">Phonolite</span> Uncommon extrusive rock

Phonolite is an uncommon shallow intrusive or extrusive rock, of intermediate chemical composition between felsic and mafic, with texture ranging from aphanitic (fine-grained) to porphyritic (mixed fine- and coarse-grained). Phonolite is a variation of the igneous rock trachyte that contains nepheline or leucite rather than quartz. It has an unusually high (12% or more) Na2O + K2O content, defining its position in the TAS classification of igneous rocks. Its coarse grained (phaneritic) intrusive equivalent is nepheline syenite. Phonolite is typically fine grained and compact. The name phonolite comes from the Ancient Greek meaning "sounding stone" due to the metallic sound it produces if an unfractured plate is hit; hence, the English name clinkstone is given as a synonym.

<span class="mw-page-title-main">Volcanic rock</span> Rock formed from lava erupted from a volcano

Volcanic rock is a rock formed from lava erupted from a volcano. Like all rock types, the concept of volcanic rock is artificial, and in nature volcanic rocks grade into hypabyssal and metamorphic rocks and constitute an important element of some sediments and sedimentary rocks. For these reasons, in geology, volcanics and shallow hypabyssal rocks are not always treated as distinct. In the context of Precambrian shield geology, the term "volcanic" is often applied to what are strictly metavolcanic rocks. Volcanic rocks and sediment that form from magma erupted into the air are called "pyroclastics," and these are also technically sedimentary rocks.

<span class="mw-page-title-main">Nepheline syenite</span> Holocrystalline plutonic rock

Nepheline syenite is a holocrystalline plutonic rock that consists largely of nepheline and alkali feldspar. The rocks are mostly pale colored, grey or pink, and in general appearance they are not unlike granites, but dark green varieties are also known. Phonolite is the fine-grained extrusive equivalent.

<span class="mw-page-title-main">Aplite</span> Fine-grained intrusive igneous rock type similar to granite

Aplite is an intrusive igneous rock in which the mineral composition is the same as granite, but in which the grains are much finer, under 1 mm across. Quartz and feldspar are the dominant minerals. The term aplite or aplitic is often used as a textural term to describe veins of quartz and feldspar with a fine to medium-grain "sugary" texture. Aplites are usually very fine-grained, white, grey or pinkish, and their constituents are visible only with the help of a magnifying lens. Dykes and veins of aplite are commonly observed traversing granitic bodies; they occur also, though less frequently, in syenites, diorites, quartz diabases, and gabbros.

<span class="mw-page-title-main">Intrusive rock</span> Magmatic rock formed below the surface

Intrusive rock is formed when magma penetrates existing rock, crystallizes, and solidifies underground to form intrusions, such as batholiths, dikes, sills, laccoliths, and volcanic necks.

<span class="mw-page-title-main">Carbonatite</span> Igneous rock with more than 50% carbonate minerals

Carbonatite is a type of intrusive or extrusive igneous rock defined by mineralogic composition consisting of greater than 50% carbonate minerals. Carbonatites may be confused with marble and may require geochemical verification.

<span class="mw-page-title-main">Granophyre</span> Subvolcanic rock that contains quartz and alkali feldspar in characteristic angular intergrowths

Granophyre is a subvolcanic rock that contains quartz and alkali feldspar in characteristic angular intergrowths such as those in the accompanying image.

<span class="mw-page-title-main">Monzonite</span> Igneous intrusive rock with low quartz and equal plagioclase and alkali feldspar

Monzonite is an igneous intrusive rock, formed by slow cooling of underground magma that has a moderate silica content and is enriched in alkali metal oxides. Monzonite is composed mostly of plagioclase and alkali feldspar.

<span class="mw-page-title-main">Geology of the Australian Capital Territory</span> Overview of the geology of the Australian Capital Territory

The geology of the Australian Capital Territory includes rocks dating from the Ordovician around 480 million years ago, whilst most rocks are from the Silurian. During the Ordovician period the region—along with most of eastern Australia—was part of the ocean floor. The area contains the Pittman Formation consisting largely of Quartz-rich sandstone, siltstone and shale; the Adaminaby Beds and the Acton Shale.

<span class="mw-page-title-main">Fractional crystallization (geology)</span> Process of rock formation

Fractional crystallization, or crystal fractionation, is one of the most important geochemical and physical processes operating within crust and mantle of a rocky planetary body, such as the Earth. It is important in the formation of igneous rocks because it is one of the main processes of magmatic differentiation. Fractional crystallization is also important in the formation of sedimentary evaporite rocks.

<span class="mw-page-title-main">Texture (geology)</span>

In geology, texture or rock microstructure refers to the relationship between the materials of which a rock is composed. The broadest textural classes are crystalline, fragmental, aphanitic, and glassy. The geometric aspects and relations amongst the component particles or crystals are referred to as the crystallographic texture or preferred orientation. Textures can be quantified in many ways. The most common parameter is the crystal size distribution. This creates the physical appearance or character of a rock, such as grain size, shape, arrangement, and other properties, at both the visible and microscopic scale.

The Mount Pleasant Caldera is a large eroded Late Devonian volcanic caldera complex, located in the northern Appalachian Mountains of southwestern New Brunswick, Canada. It is one of few noticeable pre-Cenozoic calderas, and its formation is associated to a period of crustal thinning that followed the Acadian orogeny in the northern Appalachian Mountains. It sits relatively near to the coastline.

This glossary of geology is a list of definitions of terms and concepts relevant to geology, its sub-disciplines, and related fields. For other terms related to the Earth sciences, see Glossary of geography terms.

<span class="mw-page-title-main">Igneous rock</span> Rock formed through the cooling and solidification of magma or lava

Igneous rock, or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rocks are formed through the cooling and solidification of magma or lava.

References

  1. Afonso R S : ''A Geologia de Mocambique , Impresa Nacional de Mocamique, Maputo, 1976.
    Bettencourt Dias M : Geologia do Monte Muambe
    Koscal M, Kachamila J, Stefanovic M, Janjic M : 'Fluorite mineralization of Monte Muambe cerbonatite complex, Mozambique '
    Summary of World Congr. Non-Met Minerals pg 103-114, Beograd, 1985.