WBP2

Last updated
WBP2
Identifiers
Aliases WBP2 , WBP-2, GRAMD6, WW domain binding protein 2, DFNB107
External IDs OMIM: 606962 MGI: 104709 HomoloGene: 32160 GeneCards: WBP2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_012478
NM_001330499
NM_001348170

NM_016852
NM_001347642
NM_001361446

RefSeq (protein)

NP_001317428
NP_036610
NP_001335099

NP_001334571
NP_058548
NP_001348375

Location (UCSC) Chr 17: 75.85 – 75.86 Mb Chr 11: 115.97 – 115.98 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

WW domain-binding protein 2 is a protein that in humans is encoded by the WBP2 gene. [5] [6]

Contents

The globular WW domain is composed of 38 to 40 semiconserved amino acids shared by proteins of diverse functions including structural, regulatory, and signaling proteins. The domain is involved in mediating protein-protein interactions through the binding of polyproline ligands. This gene encodes a WW domain binding protein, which binds to the WW domain of Yes kinase-associated protein by its PY motifs. The function of this protein has not been determined. [6]

Model organisms

Model organisms have been used in the study of WBP2 function. A conditional knockout mouse line, called Wbp2tm1a(EUCOMM)Wtsi [12] [13] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists. [14] [15] [16]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion. [10] [17] Twenty three tests were carried out on mutant mice and two significant abnormalities were observed. [10] Homozygous mutant animals displayed an abnormal brainstem auditory evoked potential, while females also had decreased circulating amylase levels. [10]

Related Research Articles

<span class="mw-page-title-main">Annexin A6</span> Protein-coding gene in the species Homo sapiens

Annexin A6 is a protein that in humans is encoded by the ANXA6 gene.

<span class="mw-page-title-main">PRKAB1</span> Protein-coding gene in the species Homo sapiens

5'-AMP-activated protein kinase subunit beta-1 is an enzyme that in humans is encoded by the PRKAB1 gene.

<span class="mw-page-title-main">SMC3</span> Protein-coding gene in humans

Structural maintenance of chromosomes protein 3 (SMC3) is a protein that in humans is encoded by the SMC3 gene. SMC3 is a subunit of the Cohesin complex which mediates sister chromatid cohesion, homologous recombination and DNA looping. Cohesin is formed of SMC3, SMC1, RAD21 and either SA1 or SA2. In humans, SMC3 is present in all cohesin complexes whereas there are multiple paralogs for the other subunits.

<span class="mw-page-title-main">BAZ1B</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase, or Bromodomain adjacent to zinc finger domain, 1B (BAZ1B) is an enzyme that in humans is encoded by the BAZ1B gene.

<span class="mw-page-title-main">DUSP3</span> Protein-coding gene in the species Homo sapiens

Dual specificity protein phosphatase 3 is an enzyme that in humans is encoded by the DUSP3 gene.

<span class="mw-page-title-main">UBAP1</span> Protein-coding gene in the species Homo sapiens

Ubiquitin-associated protein 1 is a protein that in humans is encoded by the UBAP1 gene.

<span class="mw-page-title-main">ARID4A</span> Protein-coding gene in humans

AT rich interactive domain 4A (RBP1-like), also known as ARID4A, is a protein which in humans is encoded by the ARID4A gene.

<span class="mw-page-title-main">SNX5</span> Protein-coding gene in the species Homo sapiens

Sorting nexin-5 is a protein that in humans is encoded by the SNX5 gene.

<span class="mw-page-title-main">JARID2</span> Protein-coding gene in the species Homo sapiens

Protein Jumonji is a protein that in humans is encoded by the JARID2 gene. JARID2 is a member of the alpha-ketoglutarate-dependent hydroxylase superfamily.

<span class="mw-page-title-main">TBC1D10A</span> Protein-coding gene in the species Homo sapiens

TBC1 domain family member 10A is a protein that in humans is encoded by the TBC1D10A gene.

<span class="mw-page-title-main">ATPIF1</span> Protein-coding gene in the species Homo sapiens

ATPase inhibitor, mitochondrial is an enzyme that in humans is encoded by the ATPIF1 gene.

<span class="mw-page-title-main">ASXL1</span> Protein-coding gene in the species Homo sapiens

Putative Polycomb group protein ASXL1 is a protein that in humans is encoded by the ASXL1 gene.

<span class="mw-page-title-main">NECAB2</span> Protein-coding gene in the species Homo sapiens

N-terminal EF-hand calcium-binding protein 2 is a protein that in humans is encoded by the NECAB2 gene.

<span class="mw-page-title-main">Ninein-like protein</span> Protein found in humans

Ninein-like protein is a protein that in humans is encoded by the NINL gene. It is part of the centrosome.

<span class="mw-page-title-main">WBP1</span> Protein-coding gene in the species Homo sapiens

WW domain-binding protein 1 is a protein that in humans is encoded by the WBP1 gene.

<span class="mw-page-title-main">TWF1</span> Protein-coding gene in the species Homo sapiens

Twinfilin-1 is a protein that in humans is encoded by the TWF1 gene. This gene encodes twinfilin, an actin monomer-binding protein conserved from yeast to mammals. Studies of the mouse counterpart suggest that this protein may be an actin monomer-binding protein, and its localization to cortical G-actin-rich structures may be regulated by the small GTPase RAC1.

<span class="mw-page-title-main">BRDT</span> Protein-coding gene in the species Homo sapiens

Bromodomain testis-specific protein is a protein that in humans is encoded by the BRDT gene. It is a member of the Bromodomain and Extra-terminal motif (BET) protein family.

<span class="mw-page-title-main">PRMT3</span> Protein-coding gene in the species Homo sapiens

Protein arginine N-methyltransferase 3 is an enzyme that in humans is encoded by the PRMT3 gene.

<span class="mw-page-title-main">NOM1</span> Protein-coding gene in the species Homo sapiens

Nucleolar protein with MIF4G domain 1 is a protein that in humans is encoded by the NOM1 gene.

<span class="mw-page-title-main">BPIFA3</span> Protein-coding gene in the species Homo sapiens

BPI fold containing family A, member 3 (BPIFA3) is a protein that in humans is encoded by the BPIFA3 gene. The gene is also known as SPLUNC3 and C20orf71 in humans and the orthologous gene in mice is 1700058C13Rik. There are multiple variants of the BPIFA3 projected to be a secreted protein. It is very highly expressed in testis with little or no expression in other tissues. The Human Protein Atlas project and Mouse ENCODE Consortium report RNA-Seq expression at RPKM levels of 29.1 for human testis and 69.4 for mouse, but 0 for all other tissues. Similarly, the Bgee consortium, using multiple techniques in addition to RNA-Seq, reports a relative Expression Score of 95.8 out of 100 for testis and 99.0 for sperm in humans; however low levels of BPIFA3 between 20 and 30 were seen for a variety of tissues such as muscle, glands, prostate, nervous system, and skin.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000132471 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000034341 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Chen HI, Sudol M (Sep 1995). "The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules". Proc Natl Acad Sci U S A. 92 (17): 7819–23. Bibcode:1995PNAS...92.7819C. doi: 10.1073/pnas.92.17.7819 . PMC   41237 . PMID   7644498.
  6. 1 2 "Entrez Gene: WBP2 WW domain binding protein 2".
  7. "Clinical chemistry data for Wbp2". Wellcome Trust Sanger Institute.
  8. "Salmonella infection data for Wbp2". Wellcome Trust Sanger Institute.
  9. "Citrobacter infection data for Wbp2". Wellcome Trust Sanger Institute.
  10. 1 2 3 4 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  11. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  12. "International Knockout Mouse Consortium".
  13. "Mouse Genome Informatics".
  14. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  15. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi: 10.1038/474262a . PMID   21677718.
  16. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247. S2CID   18872015.
  17. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi: 10.1186/gb-2011-12-6-224 . PMC   3218837 . PMID   21722353.

Further reading