Wakabayashilite

Last updated
Wakabayashilite
Wakabayashilite-Calcite-176729.jpg
Wakabayashilite on calcite
General
Category Arsenic sulfide, Sulfosalt mineral
Formula
(repeating unit)
[(As,Sb)6S9][As4S5]
IMA symbol Wak [1]
Strunz classification 2.FA.40
Crystal system Orthorhombic
Crystal class Pyramidal (mm2)
H-M symbol: (mm2)
Space group Pna21
Unit cell a = 25.262  Å, b = 14.563 Å
c = 6.492 Å and V = 2388.4 Å3; Z = 4
Identification
Formula mass 1291.8 gram/mol
ColorGolden yellow, lemon yellow, orange yellow
Crystal habit Fibrous
Cleavage {100} Perfect, {010} Perfect and {101} Perfect
Mohs scale hardness1.5
Luster Silky
Streak Orange, yellow
Diaphaneity Translucent
Specific gravity 3.98
Pleochroism Strong
References [2] [3]

Wakabayashilite is a rare arsenic, antimony sulfide mineral with formula [(As,Sb)6S9][As4S5]. [4]

Contents

Discovery and occurrence

Wakabayashilite is a rare mineral first discovered in Nevada in the 1920s, but it was mistaken for a hair orpiment. [5] In the 1970s, wakabayashilite was found in Japan and scientifically identified as a new mineral. [6] It was named after Yaichiro Wakabayashi (1874–1943), a Japanese mineralogist of the Mitsubishi Mining Company in Japan. [2] Wakabayashilite has been discovered later in several places around the world such as in Saha Republic (Russia), Zhuang region (China) and Hautes-Alpes (France). In the United States, Wakabayashilite has been found at the White Caps Mine, in the Toquima Range of mountains, Nye County, Nevada. Other Nevada locations where the mineral has been found include the Getchel Mine, in the Osgood Mountains, Humboldt County, and at the Seminole-Regent Mine, in the Rawhide Mining District, Mineral County. [7] Originally, Wakabayashilite was found in druses of quartz associated with orpiment and realgar, however, it was later found embedded in calcite as well. [4] Generally, it mostly occurs with other arsenic minerals in high-arsenic gold deposits. [6]

Structure and optical properties

Even though Wakabayashilite possesses the hexagonal pseudosymmetry, it actually belongs to the orthorhombic crystal system meaning it contains three axes of different length but are mutually perpendicular to one another. [4] [8] It also belongs to the space group Pna21. [4] For its optical properties, Wakabayashilite is a biaxial mineral and its color in plane polarized light is golden-yellow to lemon-yellow and it also has strong pleochroism. [3]

For now, since wakabayashilite is rare, it is of no obvious economical interest. However, there have been some recent research conducted on its interesting structure, pseudosymmetry and twinning.

Related Research Articles

<span class="mw-page-title-main">Arsenopyrite</span> Iron-arsenic sulfide mineral

Arsenopyrite is an iron arsenic sulfide (FeAsS). It is a hard metallic, opaque, steel grey to silver white mineral with a relatively high specific gravity of 6.1. When dissolved in nitric acid, it releases elemental sulfur. When arsenopyrite is heated, it produces sulfur and arsenic vapor. With 46% arsenic content, arsenopyrite, along with orpiment, is a principal ore of arsenic. When deposits of arsenopyrite become exposed to the atmosphere, the mineral slowly converts into iron arsenates. Arsenopyrite is generally an acid-consuming sulfide mineral, unlike iron pyrite which can lead to acid mine drainage.

<span class="mw-page-title-main">Stibnite</span> Sulfide mineral

Stibnite, sometimes called antimonite, is a sulfide mineral with the formula Sb2S3. This soft grey material crystallizes in an orthorhombic space group. It is the most important source for the metalloid antimony. The name is derived from the Greek στίβι stibi through the Latin stibium as the former name for the mineral and the element antimony.

<span class="mw-page-title-main">Realgar</span> Arsenic sulfide mineral

Realgar, also known as "ruby sulphur" or "ruby of arsenic", is an arsenic sulfide mineral with the chemical formula α-As4S4. It is a soft, sectile mineral occurring in monoclinic crystals, or in granular, compact, or powdery form, often in association with the related mineral, orpiment. It is orange-red in color, melts at 320 °C, and burns with a bluish flame releasing fumes of arsenic and sulfur. Realgar is soft with a Mohs hardness of 1.5 to 2 and has a specific gravity of 3.5. Its streak is orange colored. It is trimorphous with pararealgar and bonazziite. Its name comes from the Arabic rahj al-ġār, via Medieval Latin, and its earliest record in English is in the 1390s.

<span class="mw-page-title-main">Ullmannite</span> Nickel antimony sulfide mineral

Ullmannite is a nickel antimony sulfide mineral with formula: NiSbS. Considerable substitution occurs with cobalt and iron in the nickel site along with bismuth and arsenic in the antimony site. A solid solution series exists with the high cobalt willyamite.

<span class="mw-page-title-main">Orpiment</span> Orange-yellow arsenic sulfide mineral

Orpiment is a deep-colored, orange-yellow arsenic sulfide mineral with formula As
2
S
3
. It is found in volcanic fumaroles, low-temperature hydrothermal veins, and hot springs and is formed both by sublimation and as a byproduct of the decay of another arsenic sulfide mineral, realgar. Orpiment takes its name from the Latin auripigmentum because of its deep-yellow color.

<span class="mw-page-title-main">Lorándite</span>

Lorándite is a thallium arsenic sulfosalt with the chemical formula: TlAsS2. Though rare, it is the most common thallium-bearing mineral. Lorandite occurs in low-temperature hydrothermal associations and in gold and mercury ore deposits. Associated minerals include stibnite, realgar, orpiment, cinnabar, vrbaite, greigite, marcasite, pyrite, tetrahedrite, antimonian sphalerite, arsenic and barite.

<span class="mw-page-title-main">Pararealgar</span>

Pararealgar is an arsenic sulfide mineral with the chemical formula As4S4, also represented as AsS. It forms gradually from realgar under exposure to light. Its name derives from the fact that its elemental composition is identical to realgar, As4S4. It is soft with a Mohs hardness of 1 - 1.5, is yellow orange in colour, and its monoclinic prismatic crystals are very brittle, easily crumbling to powder.

Mosesite is a very rare mineral found in few locations. It is a mercury mineral found as an accessory in deposits of mercury, often in conjunction with limestone. It is known to be found in the U.S. states of Texas and Nevada, and the Mexican states of Guerrero and Querétaro. It was named after Professor Alfred J. Moses (1859–1920) for his contributions to the field of mineralogy in discovering several minerals found alongside mosesite. The mineral itself is various shades of yellow and a high occurrence of spinel twinning. It becomes isotropic when heated to 186 °C (367 °F).

<span class="mw-page-title-main">Chalcophyllite</span>

Chalcophyllite is a rare secondary copper arsenate mineral occurring in the oxidized zones of some arsenic-bearing copper deposits. It was first described from material collected in Germany. At one time chalcophyllite from Wheal Tamar in Cornwall, England, was called tamarite, but this name is now discredited. At Wheal Gorland a specimen exhibiting partial replacement of liriconite, Cu
2
Al(AsO
4
)(OH)
4
•(4H
2
O)
, by chalcophyllite has been found. The mineral is named from the Greek, chalco "copper" and fyllon, "leaf", in allusion to its composition and platy structure. It is a classic Cornish mineral that can be confused with tabular spangolite.

<span class="mw-page-title-main">Alacránite</span>

Alacránite (As8S9) is an arsenic sulfide mineral first discovered in the Uzon caldera, Kamchatka, Russia. It was named for its occurrence in the Alacrán silver/arsenic/antimony mine. Pampa Larga, Chile. It is generally more rare than realgar and orpiment. Its origin is hydrothermal. It occurs as subhedral to euhedral tabular orange to pale gray crystals that are transparent to translucent. It has a yellow-orange streak with a hardness of 1.5. It crystallizes in the monoclinic crystal system. It occurs with realgar and uzonite as flattened and prismatic grains up to 0.5 mm across.

Campigliaite is a copper and manganese sulfate mineral with a chemical formula of Cu4Mn(SO4)2(OH)6·4H2O. It has a chemical formula and also a crystal structure similar to niedermayrite, with Cd(II) cation replacing by Mn(II). The formation of campigliaite is related to the oxidation of sulfide minerals to form sulfate solutions with ilvaite associated with the presence of manganese. Campigliaite is a rare secondary mineral formed when metallic sulfide skarn deposits are oxidized. While there are several related associations, there is no abundant source for this mineral due to its rare process of formation. Based on its crystallographic data and chemical formula, campigliaite is placed in the devillite group and considered the manganese analogue of devillite. Campigliaite belongs to the copper oxysalt minerals as well followed by the subgroup M=M-T sheets. The infinite sheet structures that campigliaite has are characterized by strongly bonded polyhedral sheets, which are linked in the third dimension by weaker hydrogen bonds.

<span class="mw-page-title-main">Getchellite</span>

Getchellite is a rare sulfide of arsenic and antimony, AsSbS3, that was discovered by B. G. Weissberg of the New Zealand Department of Scientific and Industrial Research in 1963, and approved as a new species by the International Mineralogical Association in 1965. Many metal sulfides are grey to black, but a few are brightly colored. Orpiment is yellow to brownish gold, cinnabar is deep red and getchellite is a bright orange red.

Allchar deposit is a low-temperature hydrothermal gold–arsenic–antimony–thallium deposit in Kavadarci Municipality of North Macedonia. For some time, the thallium-rich part of the deposit was mined. The Crven Dol mine yielded thallium and the ore body still holds estimated amount of 500 t of thallium. The mineral lorandite from this ore deposit can be used to determine the solar neutrino flux.

<span class="mw-page-title-main">Tsumebite</span>

Tsumebite is a rare phosphate mineral named in 1912 after the locality where it was first found, the Tsumeb mine in Namibia, well known to mineral collectors for the wide range of minerals found there. Tsumebite is a compound phosphate and sulfate of lead and copper, with hydroxyl, formula Pb2Cu(PO4)(SO4)(OH). There is a similar mineral called arsentsumebite, where the phosphate group PO4 is replaced by the arsenate group AsO4, giving the formula Pb2Cu(AsO4)(SO4)(OH). Both minerals are members of the brackebuschite group.

<span class="mw-page-title-main">Tsumcorite</span>

Tsumcorite is a rare hydrated lead arsenate mineral that was discovered in 1971, and reported by Geier, Kautz and Muller. It was named after the TSUMeb CORporation mine at Tsumeb, in Namibia, in recognition of the Corporation's support for mineralogical investigations of the orebody at its Mineral Research Laboratory.

Guettardite is a rare arsenic-antimony lead sulfosalt mineral with the chemical formula Pb(Sb,As)2S4. It forms gray black metallic prismatic to acicular crystals with monoclinic symmetry. It is a dimorph of the triclinic twinnite.

<span class="mw-page-title-main">Stibarsen</span> Native element mineral

Stibarsen or allemontite is a natural form of arsenic antimonide (AsSb) or antimony arsenide (SbAs). The name stibarsen is derived from Latin stibium (antimony) and arsenic, whereas allemonite refers to the locality Allemont in France where the mineral was discovered. It is found in veins at Allemont, Isère, France; Valtellina, Italy; and the Comstock Lode, Nevada; and in a lithium pegmatites at Varuträsk, Sweden. Stibarsen is often mixed with pure arsenic or antimony, and the original description in 1941 proposed to use stibarsen for AsSb and allemontite for the mixtures. Since 1982, the International Mineralogical Association considers stibarsen as the correct mineral name.

<span class="mw-page-title-main">Hemihedrite</span>

Hemihedrite is a rare lead zinc chromate silicate mineral with formula Pb10Zn(CrO4)6(SiO4)2(F,OH)2. It forms a series with the copper analogue iranite.

Playfairite is a rare sulfosalt mineral with chemical formula Pb16Sb18S43 in the monoclinic crystal system, named after the Scottish scientist and mathematician John Playfair. It was discovered in 1966 by the Canadian mineralogist John Leslie Jambor. Lead gray to black in color, its luster is metallic. Playfairite shows strong reflection pleochroism from white to brownish gray. Playfairite has a hardness of 3.5 to 4 on Mohs scale and a specific gravity of approximately 5.72.

<span class="mw-page-title-main">Nevadaite</span>

Nevadaite is a rare phosphate mineral with a chemical formula of

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 Mindat.org Accessed 10 September 2010.
  3. 1 2 Webmineral data Accessed 10 September 2010.
  4. 1 2 3 4 Bonazzi, P., Lampronti, G. I., Bindi, L. and Zanardi, S. (2005) Wakabayashilite,[(As,Sb)6S9][As4S5]: Crystal structure, pseudosymmetry, twinning and revised chemical formula. American Mineralogist, 90, 1108–1114.
  5. Gibbs, R.B. (1985) The White Caps Mine, Manhattan. Nevada: Mineralogical Record, 16, 81-88.
  6. 1 2 "Wakabayashilite". www.mines.unr.edu. Archived from the original on 5 June 2010. Retrieved 7 March 2023.
  7. Castor, Stephen B.; Ferdock, Gregory C. (2003). Minerals of Nevada. NBMG Special Publication 31. Reno, Nevada: Nevada Bureau of Mines and Geology: University of Nevada Press. ISBN   0874178827.
  8. Klein, C., and Dutrow, B. (2007) The 23rd edition of the Manual of Mineral Science, 130. John Wiley and Sons, Inc. Hoboken, New Jersey, U.S.A.