Water management in Greater Damascus, a metropolitan area with more than 4 million inhabitants, is characterized by numerous challenges, including groundwater overexploitation, increasing water demand, intermittent supply, and pollution. These challenges could be exacerbated by the impact of climate change, since projections indicate that a decrease in rainfall is likely. The quality of residential water supply mirrors social divisions within the metropolitan area, with the poorest neighborhoods receiving the worst service. Irrigation in the rural parts of Greater Damascus, in particular in the Ghouta, still accounts for about 70% of water use in the metropolitan area, with the remainder being used for residential, commercial and industrial use.
The government has responded to the above challenges by banning the drilling of new agricultural wells, promoting water-saving irrigation techniques, rehabilitating the distribution network to reduce leakage, investing heavily in wastewater treatment for reuse, and experimenting with groundwater recharge. However, none of these measures has been successfully completed so far. Reallocation of water from irrigation to urban uses has also been suggested, but it has never been seriously considered by the government for political reasons, including strong traditional links of the ruling Baath Party to the Peasant's Union. Instead of forcefully promoting local solutions, the government continues to contemplate the large-scale transfer of water from Lake Assad on the Euphrates River through a costly mega-project.
Decision-making concerning water remains highly centralized. Ultimately the President of Syria takes all key decisions. Below him responsibility for the water sector is fragmented between different Ministries. One of them is the Ministry of Housing and Construction, which supervises the Damascus Water Supply and Sewerage Authority, the public utility for Greater Damascus. The Ministry of Irrigation also plays an important role in the sector.
Greater Damascus is located within the Barada basin, a closed basin that covers 8,630 km², and the neighboring Awaj basin. The Barada basin stretches over a distance of 81 km from the Anti-Lebanon mountains in the Northeast of Damascus at an altitude of more than 2,000 m with precipitation of up to 1,800 mm per year to the Ghouta oasis to the West of Damascus at an altitude of 600 m with less than 100 mm of rainfall. The smaller 70 km-long Awaj river runs South of the Barada river. Total primary water resources in the two basins, surface and groundwater, have been estimated at 452 million cubic per year. These water resources are augmented by reused wastewater and return flows from irrigation, estimated at between 500 and more than 800 million cubic metres per year, adding up to a total of 900 and almost 1300 million cubic metres per year. [1] Precipitation is highly seasonal and occurs primarily during winter.
The main sources of water supply for Damascus are the Fijeh and Barada springs. The Fijeh springs are a group of three large karstic springs - The Fijeh main spring, the Fijeh side spring and the Harouch spring - in the Barada gorge. The three springs used to contribute half the flow of the Barada River. The Barada spring is located North of the Fijeh springs close to the Lebanese border. The entire flow of all these springs is captured today, including through wells positioned around the springs. This is why it appears during the summer that the Barada spring has dried up, while its flow is actually being captured and transferred along the river to supply various towns in the Barada gorge as well as Damascus itself with drinking water. Water from the Barada and Fijeh springs is transferred to a mixing station near Dummar where it is being chlorinated and distributed to the city. The city’s water supply is complemented by well fields in the plains around the city. The flow of the springs is highly seasonal, lagging several months behind the precipitation because of snow melt and the karstic characteristics of the rocks from which they emerge. The flow of the Figeh springs is less than 4 m3/second during the low-flow period from July to December. However, it reaches a maximum of more than 12m3/second (average 1962-1991) in April. [2]
The remaining winter flow of the Barada river is not used for drinking water supply in Damascus. However, it plays an important recreational role for the numerous restaurants along its upper course. It also aliments the Ghouta oasis. When it leaves the Barada gorge and enters the plain of Damascus the Barada river splits into five branches. The two Northern branches flow along the foot of the Qasium mountain towards the East. The central branches, including the Barada proper, flow through the city center alongside the old city into the heart of the Ghouta. The southernmost branch takes a turn to the West before entering the city, and flows into what is called the Western Ghouta. Historically, much of the summer base flow of these rivers derived from the Fijeh and Barada springs. However, since the springs have been captured the river carries fresh water only during the winter and spring. Downstream of Damascus, it also carries more or less diluted wastewater that is being indirectly reused for irrigation in the Ghouta. Some winter flows also end up in the intermittent Lake Al-Utaybah, the lowest point of the closed Barada basin where the water infiltrates or evaporates.
Greater Damascus had about 4.2 million inhabitants in 2007 or about 25% of the population of Syria. This includes 1.7 million in Damascus governorate itself and 2.5 million in the surrounding governorate of Damascus Rif. Most of the population of Greater Damascus lives within the Barada and Awaj basins.
Just like data on water availability, publicly available data on water use in Greater Damascus are contradictory and outdated. In 2001 water use has been estimated at between 1,350 and 1,700 million cubic metres per year. This includes water use for irrigation that was estimated at between 920 and more than 1,200 million cubic metres per year, accounting for 68% and 76% of total water use in the basin. Domestic water use was estimated at between 300 and 390 million cubic metres per year. [1] The lower bound of this estimate is probably more realistic and is equivalent to an average of about 220 liter/capita/day before distribution losses for a population connected to the network of about 3.75 million. Taking into account non-revenue water of about 50%, this corresponds to about 110 liter/capita/day which is about as much as domestic water use in Germany. However, during summer water availability and thus water use drop significantly. For example, in the summer of 2001 the city received 317,000 cubic meter per day, [1] corresponding to about 85 liter/capita/day before losses and 43 liter/capita/day after losses.
In 1998 the irrigated area in the two basins was estimated at 62,000 hectares. Since then, it is likely to have declined because of the loss of agricultural land to urbanization at the rate of about 1,000 hectares per year. [1]
Decision-making in Syria is highly centralized and water management is no exception to that rule. Local government has little to no say in water management. Within the government responsibility for water is shared between the Ministry of Housing and Construction, which is in charge of water supply and sanitation, and the Ministry of Irrigation. The Ministry of Local Administration and Environment is in charge of environmental protection, but remains relatively weak. The Ministry of Agriculture and Agrarian Reform also plays a role. Ultimately all important decisions rest with the President of the Republic and the Prime Minister. Decision-making is highly politicized within the framework of general policies established by the Ba'ath Party.
According to a 2009 article by US political scientist Jessica Barnes, while water scarcity in Syria is usually presented as a result of population growth, it actually is a consequence of the ruling Ba'ath party’s promotion of water-intensive agriculture. This support for the agricultural sector is motivated in part by a desire for food self-sufficiency and growth through an expansion in irrigated agriculture. It is also linked to the rural roots of the Ba'ath party and the influential Peasants Union. Although much of the ruling class in Syria is now urban, the symbolic links between the party and the rural sector continue. [3] This political context may explain why the government is reluctant to take drastic steps to reduce the pumping of groundwater from private wells for irrigation in the Ghouta near Damascus.
The utility in charge of water supply and sanitation in Damascus is the Damascus Water Supply and Sewerage Authority, which is under the authority of the Minister of Housing and Construction. The utility’s service area includes the governorate of Damascus and parts of the surrounding Damascus Rif (Rural Damascus) governorate. In April 2009 the Syrian Government merged the two public water utilities operating in the Greater Damascus area, the Damascus Water and Sanitation Establishment (DWSSA) that operated in the Damascus governorate and the Rural Damascus Water Establishment (R-DWSSA) that operated in the Rural Damascus Governorate, into a single utility also bearing the name DWSSA. The decision was prompted by the need to better coordinate operations in the physically integrated service area of Greater Damascus, and to speed up the implementation of projects in rural Damascus governorate that had suffered from the limited execution capacity of R-DWSSA.
In 2002 a Water Resources Information Center has been established in the Ministry of Irrigation with the assistance of JICA. It established a Geographical Information System for the Barada Awaj Basin, including data on groundwater, surface water and water quality. [4]
The foremost water challenge in Greater Damascus is an increasing demand-supply imbalance, coupled with groundwater overexploitation and pollution. This imbalance leads to intermittent supply and coping costs in the form of expensive sales of water by tankers. Climate change may exacerbate this imbalance. Poor neighborhoods suffer disproportionately from the area’s water problems.
Between 1985 and 2005 the level of groundwater in the Barada basin, on which Damascus sits, declined from 50 meters to 200 meters. [5] Intensive groundwater use began in the 1960s. Prior to that the groundwater level in the ghouta was 1-3m below the surface in winter and 2-10m in summer. The main source of water for irrigation at the time were the various branches of the Barada River. Landlords ensured that irrigation canals were maintained, and surface water was distributed through an intricate system called whereby farmers took turns (Qirat) whose length varied depending on factors such as the size of their plots and distance from the canals. After a land reform in 1958 newly created cooperatives were unable to maintain the irrigation canals and to implement the distribution system. Furthermore, surface water was increasingly polluted. As a result, farmers drilled wells - usually without a permit - and thus began the overexploitation of groundwater that persists until today. [6]
Municipal water demand in Greater Damascus is increasing due to population growth of 2.6% per year (1990–2000) [1] and also to higher living standards leading to higher water demand.
The Northern and Western parts of the city, which are closer to the Fijeh springs, receive better service than the Southern and Eastern parts that are at the end of the distribution network. Service is also better in winter when the yield of the spring is highest. During winter residents in the Northwestern parts of Damascus typically receive a continuous flow of water, while residents in the Southeastern parts of the city receive water for only a few hours per day or even every couple of days during summer. For example, the town of Sahenya, 16 km south-west of Damascus, was for 10 days without water in 2006. [7] Most houses in Damascus have rooftop tanks to store water during periods of supply. Many houses have dual plumbing systems, with one tap for water that comes directly from the network and another tap for water that comes from the rooftop tank. As a consequence, many residents do not perceive a water crisis during most of the year, because they have sufficient water either from the network or from their rooftop tanks.
Residents that do not receive enough water in summer are forced to buy water from water tankers. This water is very expensive compared to subsidized tap water. The quality of the tanker water is dubious, since it is drawn from wells that tap aquifers that may be polluted. Furthermore, there is a risk of contamination in the water tankers and in roof tanks.
Surface and groundwater in the Barada basin is polluted by industrial and domestic wastewater, as well as by agricultural non-point sources such as fertilizers and pesticides. Much of the wastewater generated from industrial activities in Greater Damascus is discharged into the environment, mainly to the Barada River, without prior treatment. The uncontrolled disposal of toxic, chemical products, primarily from lead industries and battery manufactories, has also resulted in severe soil pollution. [8] There is no pre-treatment of industrial wastewater discharged into the sewer network. As a result, the largest wastewater treatment plant of Damascus in Adra frequently malfunctions. Measured concentrations of biological oxygen demand (BOD), a measure of organic water pollution, exceeded the allowed limits in most of the branches of the Barada River. [8] According to the Syrian National Environmental Action Plan of 2003, concentrations of BOD and ammonia in the Barada River exceeded Syrian Standards for 86% of collected samples between 1995 and 2000. Well and spring water in the basin is bacteriologically contaminated because of sewage discharge. The concentrations of nitrates in some wells in the Ghouta exceeded the limits set by the drinking water standards. Because of discharges by tanneries concentrations of Chromium III reach 10 mg/liter in Al Daiyani River and exceed the allowable limits tenfold in the wells of Al Zablatini area, all located in the Barada basin. [9] Surface water pollution reduces real estate values next to the river and its branches, as well as the recreational value of the river. It also damages fishery, aquaculture and biodiversity, in addition to its health impacts. [8]
In the period 1960-2010 average precipitation in the Upper Barada basin has remained the same. [2] While the yield of the Fijeh springs has declined from an annual average of 9.5m3/second in 1967-71 to 5.5 m3/second in 1996-2000, this is due to pumping from the aquifer in the immediate vicinity of the springs that was begun in 1981 in order to supply more water to Damascus during the dry season. [1] Climate models project a reduction of rainfall and an increase of temperatures for the Eastern Mediterranean. [10] Hydrological and meteorological data are considered a state secret in Syria, so that data are only indirectly available. According to a study by the Karlsruhe Institute of Technology conducted in 2010 and financed by German development cooperation funds, the yield of the Fijeh springs during the critical low-flow period from July to December is projected to decline by about 5% in the period 2021-2050 compared to the historical average during 1962-1991. However, the model projects a stronger decline of 15% for the distant future (2069-2098) compared to the base period, and even stronger declines of up to 50% during the springs' high-flow period in March–May. [2]
The poorest section of the population of Damascus live in the Southern neighborhoods which also receive the poorest service quality both in terms of quantity and quality. These neighborhoods are served primarily by wells whose quality is dubious, especially in terms of nitrates (see pollution). Due to overexploitation the amount of water available is insufficient for continuous supply, especially during summer when demand increases and groundwater levels drop (see intermittent supply). Due to pressure changes when supply is turned on and off, pollutants are sucked into leaky distribution pipes which further contaminates drinking water. This phenomenon is more widespread in the poorer neighborhoods.
As a result of the rebel capture of the village of Ain al-Fijah in the Barada River valley and its water spring in February 2012, the flow of water to Damascus and nearby towns has been sporadically cut off by the rebels in retaliation for military operations by government forces in the region for almost 5 years. [11] The conflict escalated on 23 December 2016 when the rebels reportedly polluted the water spring with diesel fuel, although the opposition denies this and claims that the spring was damaged from barrel bombs. As a result, running water was cut off to more than 5.5 million people around Damascus and the government forces launched an offensive on rebel-held villages in the Barada River Valley.
The government has responded to the challenges in various ways, including through a ban on drilling new wells, the introduction of more efficient irrigation techniques, the reduction of water losses, an ambitious municipal wastewater treatment program, and the gradual concentration of industries in newly created industrial estates. However, there are no limits on the extraction of water from more than 25,000 existing wells, [1] water distribution losses remain high, the use of efficient irrigation techniques remains limited and untreated wastewater continues to be discharged into the environment. The challenges thus are far from being resolved. In 2006 the government has temporary revived plans for an expensive scheme to bring in water from the Euphrates river, located more than 400 km from Damascus.
The Syrian intellectual and former banker Elie ElHadj has advocated that inter-basin transfer schemes should be abandoned and argues in favor of a "local solution to a local crisis". According to him, "reallocation of water away from agriculture to householders’ use, supplemented by efficient modern irrigation technology is the efficient solution to Damascus Region’s water crisis in terms of economic feasibility and water availability." [1]
Subsequently a number of local solutions are described alongside the proposed inter-basin transfer.
In 2006, the authorities were forced to stop the implementation of a plan for the drilling of more than 200 wells for drinking water supply in several regions of the Ghouta, as nitrate concentrations from the excessive use of fertilizers and from untreated wastewater seeping into the ground were found in the range of 100-200 mg/L (the drinking water quality standard sets a limit of 40 mg/L). [8] The drilling of new private wells has also been banned.
Irrigation. With the assistance of JICA; the Ministry of Irrigation encouraged farmers in 2006 to switch to more efficient irrigation methods such as sprinklers. [7] It has been estimated that saving water through installing more efficient irrigation systems such as sprinkler or drip irrigation would cost about US$0.15 per cubic meter, far less than bringing in new water from the Euphrates. [1]
Municipal water use. In 2004, JICA completed a US$50m eight-year project to replace 100 km of water pipes across Damascus, which it said resulted “in a dramatic reduction in loss of water through pipe leakage from some 60 percent to 20 percent” in the sections covered [7] However, the level of leakage remained high in other sections of the network. The Damascus utility also implements an awareness program in schools to make residents aware of the water imbalance in the basin and to encourage them to conserve water. Municipal demand management is complicated by the fact that residential water tariffs are very low. A typical residential water bill is the equivalent of about one or two Euros per household and month and thus provides little incentive to save water.
In 1999 the first wastewater treatment plant of Damascus was completed in Adra to the North-East of the city, treating a significant part of the sewage collected in the city. With a capacity of 485,000 m³/day it is a large plant capable of treating the wastewater of more than 2 million people. [8] The treated wastewater is discharged into irrigation canals in the Ghouta, where it irrigates 19,000 hectares of fruit trees. [1] The plant was financed by the Arab Fund for Economic and Social Development. [12] The government plans to build a total of 30 wastewater treatment plants throughout Greater Damascus, including in towns in the Barada gorge. [8] The European Investment Bank is financing the construction of four wastewater treatment plants to serve more than 400,000 inhabitants in the Southwest of Damascus. The bids for the design, construction and maintenance of the plants were published in 2008. [13] The Syrian-Qatari investment company plans to build a wastewater treatment plant in Jaramana Southeast of Damascus. Germany is also financing a wastewater treatment plant and associated sewers in the Yarmouk area South of Damascus.
In order to tackle the problem of industries scattered throughout the city that discharge untreated or poorly treated wastewater into the sewer network or into open streams, the government has built and is constantly expanding a modern industrial estate in Adra near Damascus. Treatment facilities will be provided according to the type of industrial processes. The goal is to gradually relocate all industries to this and other planned industrial estates. [8]
During winter some of the flow of the Fijeh springs exceeds demand and thus flows into the Barada river. The government plans to transfer some of this water through the existing pipelines, chlorinate it and inject it through recharge wells into the aquifer below Damascus to store it for use during summer. Pilot recharge projects have been initiated at various locations in the city using different recharge technologies. So far, the amount of water recharged remains limited and the large-scale feasibility of this option remains to be tested.
The Syrian government has at various times considered two alternative mega-projects to bring additional water to the Greater Damascus area. One plan consisted in the transfer of water from the coastal region over a distance of at least 225 km and a cumulated difference in altitude of about 1000m. The water sources considered were two reservoirs in the coastal basin and even offshore springs in the Mediterranean or desalination of seawater at a total cost of more than US$1 per cubic meter including its transfer. [1] By 2010 this plan was considered to have been abandoned. The other plan consists in building a pipeline from the Euphrates River. In 2006 Syrian officials said they were “pressing ahead” with a feasibility study by a Swiss company to transfer water from the Euphrates to Damascus at an estimated cost of US$2 billion. [7] The project would involve conveying water from Lake Assad, some 441 kilometers away with pumping over an altitude of 712 meters. A capacity of 850 million m3 per annum has been envisaged, about twice the current water deficit in Greater Damascus. [1] The cost for bulk water before distribution losses would be more than US$0.50 per cubic meter.
Given very low water tariffs and the lack of political willingness to increase tariffs, any mega-project would have to be heavily subsidized by the government, which does not appear to have the resources to substantially increase the subsidies to the sector beyond their current level.
The Barada is the main river of Damascus, the capital city of Syria.
Ghouta is a countryside and suburban area in southwestern Syria that surrounds the city of Damascus along its eastern and southern rim.
Water supply and sanitation in Saudi Arabia is characterized by challenges and achievements. One of the main challenges is water scarcity. In order to overcome water scarcity, substantial investments have been undertaken in seawater desalination, water distribution, sewerage and wastewater treatment. Today about 50% of drinking water comes from desalination, 40% from the mining of non-renewable groundwater and only 10% from surface water in the mountainous southwest of the country. The capital Riyadh, located in the heart of the country, is supplied with desalinated water pumped from the Arabian Gulf over a distance of 467 km. Water is provided almost for free to residential users. Despite improvements, service quality remains poor, for example in terms of continuity of supply. Another challenge is weak institutional capacity and governance, reflecting general characteristics of the public sector in Saudi Arabia. Among the achievements is a significant increases in desalination, and in access to water, the expansion of wastewater treatment, as well as the use of treated effluent for the irrigation of urban green spaces, and for agriculture.
While Peru accounts for about four per cent of the world's annual renewable water resources, over 98% of its water is available east of the Andes, in the Amazon region. The coastal area of Peru, with most of economic activities and more than half of the population, receives only 1.8% of the national freshwater renewable water resources. Economic and population growth are taking an increasing toll on water resources quantity and quality, especially in the coastal area of Peru.
Water supply and sanitation in Iran has witnessed some important improvements, especially in terms of increased access to urban water supply, while important challenges remain, particularly concerning sanitation and service provision in rural areas. Institutionally, the Ministry of Energy is in charge of policy and provincial companies are in charge of service provision.
Water supply and sanitation in Israel are intricately linked to the historical development of Israel. Because rain falls only in the winter, and largely in the northern part of the country, irrigation and water engineering are considered vital to the country's economic survival and growth. Large scale projects to desalinate seawater, direct water from rivers and reservoirs in the north, make optimal use of groundwater, and reclaim flood overflow and sewage have been undertaken. Among them is the National Water Carrier, carrying water from the country's biggest freshwater lake, the Sea of Galilee, to the northern part of the Negev desert through channels, pipes and tunnels. Israel's water demand today outstrips available conventional water resources. Thus, in an average year, Israel relies for about half of its water supply on unconventional water resources, including reclaimed water and desalination. A particularly long drought in 1998–2002 had prompted the government to promote large-scale seawater desalination. In 2022, 85% of the country's drinkable water was produced through desalination of saltwater and brackish water.
Syria is a semi-arid country with scarce water resources. The largest water-consuming sector in Syria is agriculture. Domestic water use is only about 9% of total water use. A big challenge for Syria is its high population growth, with a rapidly increasing demand for urban and industrial water. In 2006, the population of Syria was 19.4 million with a growth rate of 2.7%.
Water supply and sanitation in Jordan is characterized by severe water scarcity, which has been exacerbated by forced immigration as a result of the 1948 Arab–Israeli War, the Six-Day War in 1967, the Gulf War of 1990, the Iraq War of 2003 and the Syrian Civil War since 2011. Jordan is considered one of the ten most water scarce countries in the world. High population growth, the depletion of groundwater reserves and the impacts of climate change are likely to aggravate the situation in the future.
Greater Mexico City, a metropolitan area with more than 19 million inhabitants including Mexico's capital with about 9 million inhabitants, faces tremendous water challenges. These include groundwater overexploitation, land subsidence, the risk of major flooding, the impacts of increasing urbanization, poor water quality, inefficient water use, a low share of wastewater treatment, health concerns about the reuse of wastewater in agriculture, and limited cost recovery. Overcoming these challenges is complicated by fragmented responsibilities for water management in Greater Mexico City:
Water management in the Metropolitan Region of São Paulo, Brazil faces several challenges, including pollution of drinking water reservoirs that are surrounded by slums, water scarcity leading to conflicts with the Campinas Metropolitan area to the north, inefficient water use, and flooding. The sprawling Metropolitan Region of São Paulo (MRSP) with close to 20 million people is the seventh most populous urban area in the world and the economic, financial and technical hub of Brazil. The main stakeholders in water management in MRSP are the state government, the state water and sanitation utility Sabesp and 39 municipal governments. A basin committee for the Alto Tietê basin, which covers the entire area of the MRSP and supplies half of its water, brings together all stakeholders. It has drawn up two master plans for the management of water resources in the basin. The first was approved in 2003 and focused on urban sprawl. The second was approved in 2009 and focused on water use conflicts.
Urban water management in Bogotá, a metropolitan area of more than 8 million inhabitants, faces three main challenges: improving the quality of the highly polluted Bogotá River, controlling floods and revitalizing riparian areas along the river. The main public entities in charge of water resources management in Bogotá are the district government, the regional environmental agency Corporación Autónoma Regional (CAR) of the department of Cundinamarca, and the water and sanitation utility Empresa de Acueducto y Alcantarillado de Bogotá (EAAB). A court mandated that these entities cooperate to improve the river's quality, a ruling that translated into an agreement signed in 2007 that defined the responsibilities of each entity and forced them to approach the water management challenges in an integrated way. The agreement prepared the ground for the expansion of the Salitre wastewater treatment plant, construction of a new one, widening and protecting of riparian zones, restoring the natural meander of the river, and hydraulically connecting the river to its flood plains. These measures are supported by the World Bank and the Inter-American Development Bank.
Water resources management in Syria is confronted with numerous challenges. First, all of the country's major rivers are shared with neighboring countries, and Syria depends to a large extent on the inflow of water from Turkey through the Euphrates and its tributaries. Second, high population growth and urbanisation increase the pressure on water resources, resulting in localized groundwater depletion and pollution, for example in the Ghouta near Damascus. Third, there is no legal framework for integrated water resources management. Finally, the institutions in charge of water resources management are weak, being both highly centralized and fragmented between sectors, and they often lack the power to enforce regulations. Water resources policies have been focused on the construction of dams, the development of irrigated agriculture and occasional interbasin transfers, such as a pipeline to supply drinking water to Aleppo from the Euphrates. There are 165 dams in Syria with a total storage capacity of 19.6 km³. Demand management through metering, higher tariffs, more efficient irrigation technologies and the reduction of non-revenue water in drinking water supply has received less emphasis than supply management. The government implements a large program for the construction of wastewater treatment plants including the use of reclaimed water for irrigation.
The three cities of Abu Dhabi Emirate within the United Arab Emirates – the coastal city Abu Dhabi itself as well as the inland oases Al Ain and Liwa – receive their drinking water supply entirely from desalinated seawater.
Water supply and sanitation in Lebanon is characterized by a number of achievements and challenges. The achievements include the reconstruction of infrastructure after the 1975–90 Civil War and the 2006 war with Israel, as well as the reform of the water and sanitation sector through a water law passed in 2000. The law created four Regional Water Establishments to consolidate numerous smaller utilities.
The Coachella Valley Water District is an independent special district formed in 1918, specifically to protect and conserve local water sources in the Coachella Valley. Since then, the district has grown into a multi-faceted agency that delivers irrigation and domestic (drinking) water, collects and recycles wastewater, provides regional storm water protection, replenishes the groundwater basin and promotes water conservation.
Beijing, the capital of China, is characterized by intense water scarcity during the long dry season as well as heavy flooding during the brief wet season. Beijing is one of the most water-scarce cities in the world. Total water use is 3.6 billion cubic meters, compared to renewable fresh water resources of about 3 billion cubic meters. The difference is made up by the overexploitation of groundwater. Two-thirds of the water supply comes from groundwater, one third from surface water. Average rainfall has substantially declined since the 1950s. Furthermore, one of the two main rivers supplying the city, the Yongding River, had to be abandoned as a source of drinking water because of pollution. Water savings in industry and agriculture have compensated for these losses and freed up water for residential uses.
Ain al-Fijah is a small town in southern Syria, administratively part of the Rif Dimashq Governorate, located 25 kilometers northwest of Damascus. Nearby localities include Deir Muqaran to the west, al-Zabadani to the northwest, Basimah to the southeast and Qudsaya to the south. According to the Syria Central Bureau of Statistics, the town had a population of 3,806 in the 2004 census. The town is also the administrative centre of—though not the largest town in—the Ain al-Fijah nahiyah ("subdistrict"), which is made up of six localities with a combined population of 19,584. Its inhabitants are predominantly Sunni Muslims.
Water supply and sanitation in Vietnam is characterized by challenges and achievements. Among the achievements is a substantial increase in access to water supply and sanitation between 1990 and 2010, nearly universal metering, and increased investment in wastewater treatment since 2007. Among the challenges are continued widespread water pollution, poor service quality, low access to improved sanitation in rural areas, poor sustainability of rural water systems, insufficient cost recovery for urban sanitation, and the declining availability of foreign grant and soft loan funding as the Vietnamese economy grows and donors shift to loan financing. The government also promotes increased cost recovery through tariff revenues and has created autonomous water utilities at the provincial level, but the policy has had mixed success as tariff levels remain low and some utilities have engaged in activities outside their mandate.
Water scarcity in Iran is caused by high climatic variability, uneven distribution of water, over exploitation of available water resources,and prioritization of economic development. Water scarcity in Iran is further exacerbated by climate change.
National Policy Dialogues on Integrated Water Resources Management in Azerbaijan for managing water resources are aimed at developing a state strategy based on "Convention on the Protection and Use of Transboundary Watercourses and International Lakes" of United Nations Economic Commission for Europe and European Union Water Framework Directive and the "Water and Health" Protocol of that convention as well as other principles of the United Nations and the EU.
{{cite web}}
: Missing or empty |url=
(help)Arab Center for the Studies of Arid Zones and Dry Lands (ACSAD) and the German Federal Institute for Geosciences and Natural Resources (BGR):Cooperation project "Management, Protection and Sustainable Use of Groundwater and Soil Resources in the Arab Region":Pilot Project in the Damascus Ghouta