In quantum mechanics (and computation & information), weak measurement is a type of quantum measurement that results in an observer obtaining very little information about the system on average, but also disturbs the state very little. [1] From Busch's theorem [2] any quantum system is necessarily disturbed by measurement, but the amount of disturbance is described by a parameter called the measurement strength.
Weak measurement is a subset of the more general form of quantum measurement described by operators known as POVMs, where the strength of measurement is low. In the literature weak measurements are also known as unsharp, [3] fuzzy, [3] [4] dull, noisy, [5] approximate, and gentle [6] measurements. Additionally weak measurements are often confused with the distinct but related concept of the weak value. [7]
The most common methods of weak measurement are by coupling the quantum system to an ancilla qubit and projectively measuring the ancilla (which results in a weak measurement on the quantum system of interest), measuring a small part of large entangled systems, and for atomic physics, phase contrast imaging.
Weak measurements were first thought about in the context of weak continuous measurements of quantum systems [8] (i.e. quantum filtering and quantum trajectories). The physics of continuous quantum measurements is as follows. Consider using an ancilla, e.g. a field or a current, to probe a quantum system. The interaction between the system and the probe correlates the two systems. Typically the interaction only weakly correlates the system and ancilla (specifically, the interaction unitary operator need only to be expanded to first or second order in perturbation theory). By measuring the ancilla and then using quantum measurement theory, the state of the system conditioned on the results of the measurement can be determined. In order to obtain a strong measurement, many ancilla must be coupled and then measured. In the limit where there is a continuum of ancilla the measurement process becomes continuous in time. This process was described first by: Michael B. Mensky; [9] [10] Viacheslav Belavkin; [11] [12] Alberto Barchielli, L. Lanz, G. M. Prosperi; [13] Barchielli; [14] Carlton Caves; [15] [16] Caves and Gerald J. Milburn. [17] Later on Howard Carmichael [18] and Howard M. Wiseman [19] also made important contributions to the field.
The notion of a weak measurement is often misattributed to Yakir Aharonov, David Albert and Lev Vaidman. [7] In their article they consider an example of a weak measurement (and perhaps coin the phrase "weak measurement") and use it to motivate their definition of a weak value, which they defined there for the first time.
The Stern-Gerlach experiment is a quintessential example of the quantization of the electron spin angular momentum. It involves a strong magnetic field gradient, which causes a spin-dependent force on electrons passing through the field, creating two pure-spin beams of electrons exiting the apparatus.
Suppose the magnet in this apparatus produced a very weak gradient, such as a sliver of calcite crystal.
There is no universally accepted definition of a weak measurement. One approach is to declare a weak measurement to be a generalized measurement where some or all of the Kraus operators are close to the identity. [20] The approach taken below is to interact two systems weakly and then measure one of them. [21] After detailing this approach we will illustrate it with examples.
Consider a system that starts in the quantum state and an ancilla that starts in the state . The combined initial state is .
These two systems interact via the Hamiltonian , which generates the time evolutions (in units where ), where is the "interaction strength", which has units of inverse time. Assume a fixed interaction time and that is small, such that .
A series expansion of in gives
Because it was only necessary to expand the unitary to a low order in perturbation theory, we call this is a weak interaction. Further, the fact that the unitary is predominately the identity operator, as and are small, implies that the state after the interaction is not radically different from the initial state. The combined state of the system after interaction is
Now we perform a measurement on the ancilla to find out about the system, this is known as an ancilla-coupled measurement. We will consider measurements in a basis (on the ancilla system) such that . The measurement's action on both systems is described by the action of the projectors on the joint state . From quantum measurement theory we know the conditional state after the measurement is
where is a normalization factor for the wavefunction. Notice the ancilla system state records the outcome of the measurement. The object is an operator on the system Hilbert space and is called a Kraus operator.
With respect to the Kraus operators the post-measurement state of the combined system is
The objects are elements of what is called a POVM and must obey so that the corresponding probabilities sum to unity: . As the ancilla system is no longer correlated with the primary system, it is simply recording the outcome of the measurement, we can trace over it. Doing so gives the conditional state of the primary system alone:
which we still label by the outcome of the measurement . Indeed, these considerations allow one to derive a quantum trajectory.
We will use the canonical example of Gaussian Kraus operators given by Barchielli, Lanz, Prosperi; [13] and Caves and Milburn. [17] Take , where the position and momentum on both systems have the usual Canonical commutation relation . Take the initial wavefunction of the ancilla to have a Gaussian distribution
The position wavefunction of the ancilla is
The Kraus operators are (compared to the discussion above, we set )
while the corresponding POVM elements are
which obey . An alternative representation is often seen in the literature. Using the spectral representation of the position operator , we can write
Notice that . [17] That is, in a particular limit these operators limit to a strong measurement of position; for other values of we refer to the measurement as finite-strength; and as , we say the measurement is weak.
Phase contrast imaging is an imaging method used in atomic physics, with cold and dense dilute gases of atoms, most commonly Bose Einstein Condensates. It uses the atoms as a lens, and measures the interference between the light that is phase shifted by the atoms and the light that does not pass through the atoms.
The measurement strength is dictated by detuning of the imaging light and the time of interaction between the light and the atoms.
As stated above, Busch's theorem [2] prevents a free lunch: there can be no information gain without disturbance. However, the tradeoff between information gain and disturbance has been characterized by many authors, including C. A. Fuchs and Asher Peres; [22] Fuchs; [23] Fuchs and K. A. Jacobs; [24] and K. Banaszek. [25]
Recently the information-gain–disturbance tradeoff relation has been examined in the context of what is called the "gentle-measurement lemma". [6] [26]
Since the early days it has been clear that the primary use of weak measurement would be for feedback control or adaptive measurements of quantum systems. Indeed, this motivated much of Belavkin's work, and an explicit example was given by Caves and Milburn. An early application of an adaptive weak measurements was that of Dolinar receiver, [27] which has been realized experimentally. [28] [29] Another interesting application of weak measurements is to use weak measurements followed by a unitary, possibly conditional on the weak measurement result, to synthesize other generalized measurements. [20] Wiseman and Milburn's book [21] is a good reference for many of the modern developments.
Quantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver. Because classical information needs to be sent, quantum teleportation cannot occur faster than the speed of light.
The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.
Bell's theorem is a term encompassing a number of closely related results in physics, all of which determine that quantum mechanics is incompatible with local hidden-variable theories, given some basic assumptions about the nature of measurement. "Local" here refers to the principle of locality, the idea that a particle can only be influenced by its immediate surroundings, and that interactions mediated by physical fields cannot propagate faster than the speed of light. "Hidden variables" are supposed properties of quantum particles that are not included in quantum theory but nevertheless affect the outcome of experiments. In the words of physicist John Stewart Bell, for whom this family of results is named, "If [a hidden-variable theory] is local it will not agree with quantum mechanics, and if it agrees with quantum mechanics it will not be local."
In quantum mechanics, a density matrix is a matrix that describes an ensemble of physical systems as quantum states. It allows for the calculation of the probabilities of the outcomes of any measurements performed upon the systems of the ensemble using the Born rule. It is a generalization of the more usual state vectors or wavefunctions: while those can only represent pure states, density matrices can also represent mixed ensembles. Mixed ensembles arise in quantum mechanics in two different situations:
In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden-variable theories. Experimental verification of the inequality being violated is seen as confirmation that nature cannot be described by such theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Stewart Bell's original inequality, is a constraint—on the statistical occurrence of "coincidences" in a Bell test—which is necessarily true if an underlying local hidden-variable theory exists. In practice, the inequality is routinely violated by modern experiments in quantum mechanics.
Quantum decoherence is the loss of quantum coherence. Quantum decoherence has been studied to understand how quantum systems convert to systems which can be explained by classical mechanics. Beginning out of attempts to extend the understanding of quantum mechanics, the theory has developed in several directions and experimental studies have confirmed some of the key issues. Quantum computing relies on quantum coherence and is one of the primary practical applications of the concept.
In quantum physics, a measurement is the testing or manipulation of a physical system to yield a numerical result. A fundamental feature of quantum theory is that the predictions it makes are probabilistic. The procedure for finding a probability involves combining a quantum state, which mathematically describes a quantum system, with a mathematical representation of the measurement to be performed on that system. The formula for this calculation is known as the Born rule. For example, a quantum particle like an electron can be described by a quantum state that associates to each point in space a complex number called a probability amplitude. Applying the Born rule to these amplitudes gives the probabilities that the electron will be found in one region or another when an experiment is performed to locate it. This is the best the theory can do; it cannot say for certain where the electron will be found. The same quantum state can also be used to make a prediction of how the electron will be moving, if an experiment is performed to measure its momentum instead of its position. The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly unpredictable, and vice versa. Furthermore, the fact that nature violates the statistical conditions known as Bell inequalities indicates that the unpredictability of quantum measurement results cannot be explained away as due to ignorance about "local hidden variables" within quantum systems.
In quantum information theory, a quantum channel is a communication channel which can transmit quantum information, as well as classical information. An example of quantum information is the general dynamics of a qubit. An example of classical information is a text document transmitted over the Internet.
In functional analysis and quantum information science, a positive operator-valued measure (POVM) is a measure whose values are positive semi-definite operators on a Hilbert space. POVMs are a generalization of projection-valued measures (PVM) and, correspondingly, quantum measurements described by POVMs are a generalization of quantum measurement described by PVMs.
In quantum mechanics, notably in quantum information theory, fidelity quantifies the "closeness" between two density matrices. It expresses the probability that one state will pass a test to identify as the other. It is not a metric on the space of density matrices, but it can be used to define the Bures metric on this space.
In quantum optics, the Jaynes–Cummings model is a theoretical model that describes the system of a two-level atom interacting with a quantized mode of an optical cavity, with or without the presence of light. It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity. It is named after Edwin Thompson Jaynes and Fred Cummings in the 1960s and was confirmed experimentally in 1987..
In quantum mechanics, a weak value is a quantity related to a shift of a measuring device's pointer when usually there is pre- and postselection. It should not be confused with a weak measurement, which is often defined in conjunction. The weak value was first defined by Yakir Aharonov, David Albert, and Lev Vaidman, published in Physical Review Letters 1988, and is related to the two-state vector formalism. There is also a way to obtain weak values without postselection.
The Ghirardi–Rimini–Weber theory (GRW) is a spontaneous collapse theory in quantum mechanics, proposed in 1986 by Giancarlo Ghirardi, Alberto Rimini, and Tullio Weber.
Within computational chemistry, the Slater–Condon rules express integrals of one- and two-body operators over wavefunctions constructed as Slater determinants of orthonormal orbitals in terms of the individual orbitals. In doing so, the original integrals involving N-electron wavefunctions are reduced to sums over integrals involving at most two molecular orbitals, or in other words, the original 3N dimensional integral is expressed in terms of many three- and six-dimensional integrals.
Entanglement distillation is the transformation of N copies of an arbitrary entangled state into some number of approximately pure Bell pairs, using only local operations and classical communication.
In quantum field theory, a non-topological soliton (NTS) is a soliton field configuration possessing, contrary to a topological one, a conserved Noether charge and stable against transformation into usual particles of this field for the following reason. For fixed charge Q, the mass sum of Q free particles exceeds the energy (mass) of the NTS so that the latter is energetically favorable to exist.
In quantum mechanics, and especially quantum information theory, the purity of a normalized quantum state is a scalar defined as where is the density matrix of the state and is the trace operation. The purity defines a measure on quantum states, giving information on how much a state is mixed.
The Koopman–von Neumann (KvN) theory is a description of classical mechanics as an operatorial theory similar to quantum mechanics, based on a Hilbert space of complex, square-integrable wavefunctions. As its name suggests, the KvN theory is loosely related to work by Bernard Koopman and John von Neumann in 1931 and 1932, respectively. As explained in this entry, however, the historical origins of the theory and its name are complicated.
The entropy of entanglement is a measure of the degree of quantum entanglement between two subsystems constituting a two-part composite quantum system. Given a pure bipartite quantum state of the composite system, it is possible to obtain a reduced density matrix describing knowledge of the state of a subsystem. The entropy of entanglement is the Von Neumann entropy of the reduced density matrix for any of the subsystems. If it is non-zero, it indicates the two subsystems are entangled.
The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. It is one of the central quantities used to qualify the utility of an input state, especially in Mach–Zehnder interferometer-based phase or parameter estimation. It is shown that the quantum Fisher information can also be a sensitive probe of a quantum phase transition. The quantum Fisher information of a state with respect to the observable is defined as
{{cite book}}
: |journal=
ignored (help){{cite journal}}
: Cite journal requires |journal=
(help)