Howard John Carmichael (born 17 January 1950) is a British-born New Zealand theoretical physicist specialising in quantum optics and the theory of open quantum systems. [1] [2] He is the Dan Walls Professor of Physics at the University of Auckland and a principal investigator of the Dodd-Walls Centre. Carmichael has played a role in the development of the field of quantum optics and is particularly known for his Quantum Trajectory Theory (QTT) which offers a more detailed view of quantum behaviour by making predictions of single events happening to individual quantum systems. [3] [4] Carmichael works with experimental groups around the world to apply QTT to experiments on single quantum systems, including those contributing to the development of quantum computers. [3] He is a Fellow of Optical Society of America, the American Physical Society and the Royal Society of New Zealand. He was awarded the Max Born Award in 2003, the Humboldt Research Award in 1997 and the Dan Walls Medal of the New Zealand Institute of Physics in 2017. In 2015, he was recognised as an Outstanding Referee by the American Physical Society.
Howard Carmichael | |
---|---|
Born | 17 January 1950 |
Nationality | New Zealand |
Alma mater |
|
Scientific career | |
Fields | Theoretical physics Quantum optics |
Institutions |
Carmichael was born in Manchester England on January 17, 1950 [1] and emigrated to New Zealand. He gained a BSc in physics and mathematics in 1971, and an MSc in physics in 1973 at the University of Auckland. [1] It was here that Carmichael met New Zealand physicist Dan Walls, who supervised Carmichael's MSc in Auckland, and later his PhD at the University of Waikato from 1972 to 1977. [5] [6] Having just returned from PhD and postdoctoral studies with Roy Glauber at Harvard University and Hermann Haken at the University of Stuttgart, Walls brought the rapidly growing field of Quantum Optics to New Zealand, established a major research centre with an active strategy of collaborating with quantum optics groups around the world. [5] [6] During Carmichael's PhD studies, he and Walls made seminal contributions to the theoretical foundations of quantum optics. [6] [5] He then travelled to the United States for further postgraduate studies.
After post-doctoral positions at the City University of New York, and at the University of Texas at Austin (1979–1981) Carmichael was appointed as an assistant professor and later associate professor at the University of Arkansas. He was a visiting scientist at the Royal Signal and Radar Establishment in Malvern in 1984, visiting professor at the University of Texas at Austin in 1988 and at Caltech in 1989. In 1989 he was made associate professor, and in 1991 full professor, at the University of Oregon. [1] He returned to New Zealand in 2002 [7] to join the University of Auckland, becoming the inaugural Dan Walls Professor of Physics, a position he still holds today. [1] [8] [2]
Carmichael has made seminal contributions to the field of quantum optics and open quantum systems over more than four decades. [4] [9] He is known particularly for his development of quantum trajectory theory (1993), which offers a way to describe the evolution of a quantum system as it interacts with its environment. [3] [10] In 1993 he developed (at the same time as a separate formulation by Crispin Gardiner) the theory and application of cascaded quantum systems, in which the optical output of one quantum system becomes the optical input for another quantum system. [11] [12] [13] He has also contributed to advances in the theory of nonclassical light and quantum correlation, quantum optical measurements, quantum fluctuations and noise in radiative processes, nonlinear physics and multi-photon processes, cavity quantum electrodynamics, quantum statistical methods and quantum entanglement. [4] [1] [14]
In 1976, while Carmichael was still a graduate student, he and his doctoral supervisor Dan Walls published a seminal paper [15] [16] that predicted photon antibunching, which led to the experimental demonstration of the quantum nature of light. [6] [7] The paper was based on their work with master equation techniques to describe open quantum systems, which Carmichael began during his masters. They had decided to investigate resonance fluorescence because it seemed like a good application of their master equations to two coupled open quantum systems. There was considerable international interest among the fledgling quantum optics community, in both experimental and theoretical resonance fluorescence. [6] Using their newly developed master equation techniques, Walls and Carmichael derived the form of the fluorescence spectrum that agreed with previous experimental results. [17] They went on to calculate the second-order correlation function to explore the statistics of resonance fluorescence. They were able to use the correlation function to explain how jumps of an emitting atom imprint on the emitted photon stream. They predicted that the correlation function should drop to zero at zero time delay and suggested a Quantum Electrodynamics (QED) experiment to test their predictions. These experiments were performed shortly afterwards providing evidence of the quantum character of the light emitted in resonance fluorescence. [7] [6]
Carmichael developed quantum trajectory theory (QTT) in the early 1990s, [11] [12] around the same time as the separate formulations by Dalibard Castin & Mølmer, and by Zoller, Ritsch & Dum). QTT (also known as quantum jump method or Monte Carlo wave function (MCWF)) is a formulation of quantum mechanics that tracks the path that a quantum object takes through the space of all its possible states as it is measured. [10]
QTT is compatible with the standard formulation of quantum theory, as described by the Schrödinger equation, but offers a more detailed view. [3] The Schrödinger equation, is a probabilistic theory. It gives the probability of finding a quantum system in each of its possible states should a measurement be made. This is useful for predicting average measurements of large ensembles of quantum objects but it does not describe the behaviour of individual particles. QTT fills this gap by offering a way to describe the trajectories of individual quantum particles that obey the probabilities given by the Schrödinger equation. [3] [18] QTT also works with open quantum systems that interact with their environment unlike the Schrödinger equation which only describes a quantum system in isolation. [10] QTT has become particularly popular since the technology has become available to efficiently control and monitor individual quantum systems as it can predict how individual quantum objects such as particles will behave when they are observed. [3]
In QTT open quantum systems are modelled as scattering processes, with classical external fields corresponding to the inputs and classical stochastic processes corresponding to the outputs (the fields after the measurement process). [1] The mapping from inputs to outputs is provided by a quantum stochastic process that is set up to account for a particular measurement strategy (eg., photon counting, homodyne/heterodyne detection, etc). [8]
QTT addresses the measurement problem in quantum mechanics by providing a detailed description of what happens during the so-called "collapse of the wave function". It reconciles the concept of a quantum jump with the smooth evolution described by the Schrödinger equation. The theory suggests that "quantum jumps" are not instantaneous but happen in a coherently driven system as a smooth transition through a series of superposition states. [18] This prediction was tested experimentally in 2019 by a team at Yale University led by Michel Devoret and Zlatko Minev in collaboration with Carmichael and others at Yale University and the University of Auckland. In their experiment they used a superconducting artificial atom to observe a quantum jump in detail, confirming that the transition is a continuous process that unfolds over time. They were also able to detect when a quantum jump was about to occur and intervene to reverse it, sending the system back to the state in which it started. [19] This experiment, inspired and guided by QTT, represents a new level of control over quantum systems and has potential applications in correcting errors in quantum computing in the future. [19] [20] [21] [22] [10] [18] [23]
In modern physics, the double-slit experiment demonstrates that light and matter can exhibit the seemingly incongruous classical definitions of both particles and waves. This ambiguity is considered evidence for the fundamentally probabilistic nature of quantum mechanics. This type of experiment was first performed by Thomas Young in 1801, as a demonstration of the wave behavior of visible light. In 1927, Davisson and Germer and, independently George Paget Thomson and his research student Alexander Reid demonstrated that electrons show the same behavior, which was later extended to atoms and molecules. Thomas Young's experiment with light was part of classical physics long before the development of quantum mechanics and the concept of wave–particle duality. He believed it demonstrated that the Christiaan Huygens' wave theory of light was correct, and his experiment is sometimes referred to as Young's experiment or Young's slits.
A photon is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that always move at the speed of light measured in vacuum. The photon belongs to the class of boson particles.
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science.
Wave-particle duality is the concept in quantum mechanics that quantum entities exhibit particle or wave properties according to the experimental circumstances. It expresses the inability of the classical concepts such as particle or wave to fully describe the behavior of quantum objects. During the 19th and early 20th centuries, light was found to behave as a wave then later discovered to have a particulate behavior, whereas electrons behaved like particles in early experiments then later discovered to have wavelike behavior. The concept of duality arose to name these seeming contradictions.
Atomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions, at the scale of one or a few atoms and energy scales around several electron volts. The three areas are closely interrelated. AMO theory includes classical, semi-classical and quantum treatments. Typically, the theory and applications of emission, absorption, scattering of electromagnetic radiation (light) from excited atoms and molecules, analysis of spectroscopy, generation of lasers and masers, and the optical properties of matter in general, fall into these categories.
The de Broglie–Bohm theory is an interpretation of quantum mechanics which postulates that, in addition to the wavefunction, an actual configuration of particles exists, even when unobserved. The evolution over time of the configuration of all particles is defined by a guiding equation. The evolution of the wave function over time is given by the Schrödinger equation. The theory is named after Louis de Broglie (1892–1987) and David Bohm (1917–1992).
Photoluminescence is light emission from any form of matter after the absorption of photons. It is one of many forms of luminescence and is initiated by photoexcitation, hence the prefix photo-. Following excitation, various relaxation processes typically occur in which other photons are re-radiated. Time periods between absorption and emission may vary: ranging from short femtosecond-regime for emission involving free-carrier plasma in inorganic semiconductors up to milliseconds for phosphoresence processes in molecular systems; and under special circumstances delay of emission may even span to minutes or hours.
Quantum optics is a branch of atomic, molecular, and optical physics dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons. Photons have been used to test many of the counter-intuitive predictions of quantum mechanics, such as entanglement and teleportation, and are a useful resource for quantum information processing.
In quantum mechanics, the measurement problem is the problem of definite outcomes: quantum systems have superpositions but quantum measurements only give one definite result.
Daniel Frank Walls FRS was a New Zealand theoretical physicist specialising in quantum optics.
The history of quantum mechanics is a fundamental part of the history of modern physics. The major chapters of this history begin with the emergence of quantum ideas to explain individual phenomena—blackbody radiation, the photoelectric effect, solar emission spectra—an era called the Old or Older quantum theories. Building on the technology developed in classical mechanics, the invention of wave mechanics by Erwin Schrödinger and expansion by many others triggers the "modern" era beginning around 1925. Paul Dirac's relativistic quantum theory work lead him to explore quantum theories of radiation, culminating in quantum electrodynamics, the first quantum field theory. The history of quantum mechanics continues in the history of quantum field theory. The history of quantum chemistry, theoretical basis of chemical structure, reactivity, and bonding, interlaces with the events discussed in this article.
Stephan W. Koch was a German theoretical physicist. He was a professor at the University of Marburg and works on condensed-matter theory, many-body effects, and laser theory. He is best known for his seminal contributions to the optical and electronic properties of semiconductors, semiconductor quantum optics, and semiconductor laser designs. Major portion of his research work has focused on the quantum physics and application potential of semiconductor nanostructures. Besides gaining fundamental insights to the many-body quantum theory, his work has provided new possibilities to develop, e.g., laser technology, based on accurate computer simulations. His objective has been to self-consistently include all relevant many-body effects in order to eliminate phenomenological approximations that compromise predictability of effects and quantum-device designs.
Quantum-optical spectroscopy is a quantum-optical generalization of laser spectroscopy where matter is excited and probed with a sequence of laser pulses.
Professor Margaret Daphne Reid from Swinburne University of Technology is a Fellow of the Australian Academy of Science. She is known for her pioneering work in new fundamental tests of quantum theory, including teleportation and cryptography.
Hamilton's optico-mechanical analogy is a conceptual parallel between trajectories in classical mechanics and wavefronts in optics, introduced by William Rowan Hamilton around 1831. It may be viewed as linking Huygens' principle of optics with Maupertuis' principle of mechanics.
Nicolas Gisin is a Swiss physicist and professor at the University of Geneva, working on the foundations of quantum mechanics, quantum information, and communication. His work includes both experimental and theoretical physics. He has contributed work in the fields of experimental quantum cryptography and long-distance quantum communication over standard telecom optical fibers. He also co-founded ID Quantique, a company that provides quantum-based technologies.
Peter David Drummond is a physicist and distinguished professor in the Centre for Quantum and Optical Science at Swinburne University of Technology.
Crispin William Gardiner is a New Zealand physicist, who has worked in the fields of quantum optics, ultracold atoms and stochastic processes. He has written about 120 journal articles and several books in the fields of quantum optics, stochastic processes and ultracold atoms.
The Dodd-Walls Centre for Photonic and Quantum Technologies is a New Zealand Centre of Research Excellence, established in 2015, hosted by the University of Otago, and composed of researchers in six New Zealand universities as well as partner institutions in the US, United Kingdom, and Singapore. It does fundamental research on the quantum nature of matter, the physics and optics of light, and the manipulation of individual photons. New knowledge and applications are commercialised for industries including agritech, medicine, and civil engineering.
Quantum Trajectory Theory (QTT) is a formulation of quantum mechanics used for simulating open quantum systems, quantum dissipation and single quantum systems. It was developed by Howard Carmichael in the early 1990s around the same time as the similar formulation, known as the quantum jump method or Monte Carlo wave function (MCWF) method, developed by Dalibard, Castin and Mølmer. Other contemporaneous works on wave-function-based Monte Carlo approaches to open quantum systems include those of Dum, Zoller and Ritsch, and Hegerfeldt and Wilser.