Weil group

Last updated • 4 min readFrom Wikipedia, The Free Encyclopedia

In mathematics, a Weil group, introduced by Weil  ( 1951 ), is a modification of the absolute Galois group of a local or global field, used in class field theory. For such a field F, its Weil group is generally denoted WF. There also exists "finite level" modifications of the Galois groups: if E/F is a finite extension, then the relative Weil group of E/F is WE/F = WF/W c
E
 
(where the superscript c denotes the commutator subgroup).

Contents

For more details about Weil groups see ( Artin & Tate 2009 ) or ( Tate 1979 ) or ( Weil 1951 ).

Class formation

The Weil group of a class formation with fundamental classes uE/FH2(E/F, AF) is a kind of modified Galois group, used in various formulations of class field theory, and in particular in the Langlands program.

If E/F is a normal layer, then the (relative) Weil group WE/F of E/F is the extension

1 AFWE/F Gal(E/F) 1

corresponding (using the interpretation of elements in the second group cohomology as central extensions) to the fundamental class uE/F in H2(Gal(E/F), AF). The Weil group of the whole formation is defined to be the inverse limit of the Weil groups of all the layers G/F, for F an open subgroup of G.

The reciprocity map of the class formation (G, A) induces an isomorphism from AG to the abelianization of the Weil group.

Archimedean local field

For archimedean local fields the Weil group is easy to describe: for C it is the group C× of non-zero complex numbers, and for R it is a non-split extension of the Galois group of order 2 by the group of non-zero complex numbers, and can be identified with the subgroup C×jC× of the non-zero quaternions.

Finite field

For finite fields the Weil group is infinite cyclic. A distinguished generator is provided by the Frobenius automorphism. Certain conventions on terminology, such as arithmetic Frobenius, trace back to the fixing here of a generator (as the Frobenius or its inverse).

Local field

For a local field of characteristic p > 0, the Weil group is the subgroup of the absolute Galois group of elements that act as a power of the Frobenius automorphism on the constant field (the union of all finite subfields).

For p-adic fields the Weil group is a dense subgroup of the absolute Galois group, and consists of all elements whose image in the Galois group of the residue field is an integral power of the Frobenius automorphism.

More specifically, in these cases, the Weil group does not have the subspace topology, but rather a finer topology. This topology is defined by giving the inertia subgroup its subspace topology and imposing that it be an open subgroup of the Weil group. (The resulting topology is "locally profinite".)

Function field

For global fields of characteristic p>0 (function fields), the Weil group is the subgroup of the absolute Galois group of elements that act as a power of the Frobenius automorphism on the constant field (the union of all finite subfields).

Number field

For number fields there is no known "natural" construction of the Weil group without using cocycles to construct the extension. The map from the Weil group to the Galois group is surjective, and its kernel is the connected component of the identity of the Weil group, which is quite complicated.

Weil–Deligne group

The Weil–Deligne group scheme (or simply Weil–Deligne group) WK of a non-archimedean local field, K, is an extension of the Weil group WK by a one-dimensional additive group scheme Ga, introduced by Deligne (1973 , 8.3.6). In this extension the Weil group acts on the additive group by

where w acts on the residue field of order q as aa||w|| with ||w|| a power of q.

The local Langlands correspondence for GLn over K (now proved) states that there is a natural bijection between isomorphism classes of irreducible admissible representations of GLn(K) and certain n-dimensional representations of the Weil–Deligne group of K.

The Weil–Deligne group often shows up through its representations. In such cases, the Weil–Deligne group is sometimes taken to be WK × SL(2,C) or WK × SU(2,R), or is simply done away with and Weil–Deligne representations of WK are used instead. [1]

In the archimedean case, the Weil–Deligne group is simply defined to be Weil group.

See also

Notes

Related Research Articles

In mathematics, a field K is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation v and if its residue field k is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, real numbers R, and the complex numbers C are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields.

In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by Robert Langlands, it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics."

In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field.

In mathematics, the Weil conjectures were highly influential proposals by André Weil (1949). They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.

In mathematics, Grothendieck's Galois theory is an abstract approach to the Galois theory of fields, developed around 1960 to provide a way to study the fundamental group of algebraic topology in the setting of algebraic geometry. It provides, in the classical setting of field theory, an alternative perspective to that of Emil Artin based on linear algebra, which became standard from about the 1930s.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

In mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory.

In mathematics, local class field theory, introduced by Helmut Hasse, is the study of abelian extensions of local fields; here, "local field" means a field which is complete with respect to an absolute value or a discrete valuation with a finite residue field: hence every local field is isomorphic (as a topological field) to the real numbers R, the complex numbers C, a finite extension of the p-adic numbersQp (where p is any prime number), or the field of formal Laurent series Fq((T)) over a finite field Fq.

In mathematics, an Artin L-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group G. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin L-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis.

In mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group A. Often, this construction is made in the following situation: G is a commutative group scheme over a field K, Ks is the separable closure of K, and A = G(Ks). In this case, the Tate module of A is equipped with an action of the absolute Galois group of K, and it is referred to as the Tate module of G.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

In mathematics, a quasi-finite field is a generalisation of a finite field. Standard local class field theory usually deals with complete valued fields whose residue field is finite, but the theory applies equally well when the residue field is only assumed quasi-finite.

In mathematics, a class formation is a topological group acting on a module satisfying certain conditions. Class formations were introduced by Emil Artin and John Tate to organize the various Galois groups and modules that appear in class field theory.

In representation theory, a branch of mathematics, the Langlands dualLG of a reductive algebraic group G is a group that controls the representation theory of G. If G is defined over a field k, then LG is an extension of the absolute Galois group of k by a complex Lie group. There is also a variation called the Weil form of the L-group, where the Galois group is replaced by a Weil group. Here, the letter L in the name also indicates the connection with the theory of L-functions, particularly the automorphic L-functions. The Langlands dual was introduced by Langlands (1967) in a letter to A. Weil.

In mathematics, the local Langlands conjectures, introduced by Robert Langlands, are part of the Langlands program. They describe a correspondence between the complex representations of a reductive algebraic group G over a local field F, and representations of the Langlands group of F into the L-group of G. This correspondence is not a bijection in general. The conjectures can be thought of as a generalization of local class field theory from abelian Galois groups to non-abelian Galois groups.

In mathematics, Deligne–Lusztig theory is a way of constructing linear representations of finite groups of Lie type using ℓ-adic cohomology with compact support, introduced by Pierre Deligne and George Lusztig (1976).

In mathematics, the Langlands–Deligne local constant, also known as the local epsilon factor or local Artin root number, is an elementary function associated with a representation of the Weil group of a local field. The functional equation

In mathematics, Lafforgue's theorem, due to Laurent Lafforgue, completes the Langlands program for general linear groups over algebraic function fields, by giving a correspondence between automorphic forms on these groups and representations of Galois groups.

In mathematics, base change lifting is a method of constructing new automorphic forms from old ones, that corresponds in Langlands philosophy to the operation of restricting a representation of a Galois group to a subgroup.

Basic Number Theory is an influential book by André Weil, an exposition of algebraic number theory and class field theory with particular emphasis on valuation-theoretic methods. Based in part on a course taught at Princeton University in 1961-2, it appeared as Volume 144 in Springer's Grundlehren der mathematischen Wissenschaften series. The approach handles all 'A-fields' or global fields, meaning finite algebraic extensions of the field of rational numbers and of the field of rational functions of one variable with a finite field of constants. The theory is developed in a uniform way, starting with topological fields, properties of Haar measure on locally compact fields, the main theorems of adelic and idelic number theory, and class field theory via the theory of simple algebras over local and global fields. The word `basic’ in the title is closer in meaning to `foundational’ rather than `elementary’, and is perhaps best interpreted as meaning that the material developed is foundational for the development of the theories of automorphic forms, representation theory of algebraic groups, and more advanced topics in algebraic number theory. The style is austere, with a narrow concentration on a logically coherent development of the theory required, and essentially no examples.

References