Well test (oil and gas)

Last updated

In the petroleum industry, a well test is the execution of a set of planned data acquisition activities. The acquired data is analyzed to broaden the knowledge and increase the understanding of the hydrocarbon properties therein and characteristics of the underground reservoir where the hydrocarbons are trapped.

Contents

The test will also provide information about the state of the particular well used to collect data. The overall objective is identifying the reservoir's capacity to produce hydrocarbons, such as oil, natural gas and condensate.

Data gathered during the test period includes volumetric flow rate and pressure observed in the selected well. Outcomes of a well test, for instance flow rate data and gas oil ratio data, may support the well allocation process for an ongoing production phase, while other data about the reservoir capabilities will support reservoir management.

Example Well Testing Package. Shown: Choke Manifold, Well Testing Separator, flare stack, surge tank and Wellhead. Well Testing Equipment.jpg
Example Well Testing Package. Shown: Choke Manifold, Well Testing Separator, flare stack, surge tank and Wellhead.

Scope and definitions

There are many flavours of well tests and various ways to categorize test types by its objectives, however two main categories only by objectives, these are productivity tests and descriptive tests. [1] According to The Lease Pumper's Handbook of Oklahoma Commission on Marginally Producing Oil and Gas Wells, there are four basic well test types: potential tests, daily tests, productivity tests, and gas oil ratio tests, [2] the latter three in the broader productivity test category.

Test objectives will change throughout the different phases of a reservoir or oil field, from the exploration phase of wildcat and appraisal wells, through the field development phase and finally through the production phase, which may also have variations from the initial period of production to improved recovery by the end of the field lifecycle time. [1]

Exploration phase

Professionals working with reservoir modelling may get information about the rock permeability from core samples. Other sources of information to the model are well log data and seismic data, but such data are complementary only, and for example, seismic data is insufficient to interpret whether a structural trap has been sealed. Information from well tests will supplement the amount of information with flow rate data, pressure data, and other, which is needed to build a rich reservoir model. The main objective in the exploration phase is to assess the size of a reservoir and state with a given certainty whether it has the properties for commercial exploitation and shall contribute to accounting for available reserves. [1]

Well testing taking place before permanent well completion is referred to as drill stem testing or formation testing - depending on the technology used.

Field development phase

The reservoir model is further developed to support the field development planning and to advise for the optimal location for extra production wells to be drilled. Descriptive well tests are designed and performed in the new wells.

Field production phase

Simplified process flow diagram. A plant is receiving a multi phased flow of oil and gas from many wells via a manifold. Flow from one well only may be taken to the test separator (shaded). The test separator has the feature to separate gas and water from the oil, and to have each component measured, under different conditions. Well test separator.svg
Simplified process flow diagram. A plant is receiving a multi phased flow of oil and gas from many wells via a manifold. Flow from one well only may be taken to the test separator (shaded). The test separator has the feature to separate gas and water from the oil, and to have each component measured, under different conditions.

Flow test

This test has also been called daily test [2] and may have various other namings. Often, and especially at offshore fields, a number of wells produce to a common separator, and flows from several separators or facilities may be headed into a commingled flow in pipeline that transports oil or gas for sale (export).

The total flow rate of all wells in total are measured, but the contributions of the individual wells are unknown. It is important to know the individual contributions to account hydrocarbon material balance and for well monitoring and reservoir management.

To obtain individual well flow rates, it is common to use a smaller test separator. This is an isolated and down-scaled processing system in parallel with the normal flows. Regularly, for example once a month per well, the flow from one and only one selected well is led into the test separator for determining well flow rate for the selected well. [3] The separator divides the flow from the well into the streams of individual products which typically are oil, gas and water, but may include natural-gas condensate. Contamination may also be removed and fluid samples collected. This helps to allocate individual flow rate contributions, but the method has uncertainties. Flow rate, water cut, GOR and other parameters for the test system can deviate from production separators. [4] This is generally taken into account by the allocation of products back to individual wells based on the field total, and by using data from the individual well tests.

Another method [5] to obtain individual well flow rates takes the state observer approach, where the states to be estimated as the unknown flow rates from individual wells. This approach allows the incorporation of other modes of measurements such as spin-cuts (manual water cut readings) and dynamometer card based inferred rates. The reconciliation of these measurements with the flow tests, along with a systematic mechanism to account for measurement noise, leads to improved per well rate estimation accuracy.

Multiphase flow meters have to some degree reduced the need for flow tests and test separators. [6] Multiphase flow meters are not suitable for all applications where clean-ups are required post workover. In the absence of accurate, robust and low-cost multi-phase flow meters, large oil fields with thousands of wells continue to rely on well tests as the primary source of information for production surveillance.

Related Research Articles

<span class="mw-page-title-main">Oil well</span> Well drilled to extract crude oil and/or gas

An oil well is a drillhole boring in Earth that is designed to bring petroleum oil hydrocarbons to the surface. Usually some natural gas is released as associated petroleum gas along with the oil. A well that is designed to produce only gas may be termed a gas well. Wells are created by drilling down into an oil or gas reserve that is then mounted with an extraction device such as a pumpjack which allows extraction from the reserve. Creating the wells can be an expensive process, costing at least hundreds of thousands of dollars, and costing much more when in hard to reach areas, e.g., when creating offshore oil platforms. The process of modern drilling for wells first started in the 19th century, but was made more efficient with advances to oil drilling rigs during the 20th century.

Well logging, also known as borehole logging is the practice of making a detailed record of the geologic formations penetrated by a borehole. The log may be based either on visual inspection of samples brought to the surface or on physical measurements made by instruments lowered into the hole. Some types of geophysical well logs can be done during any phase of a well's history: drilling, completing, producing, or abandoning. Well logging is performed in boreholes drilled for the oil and gas, groundwater, mineral and geothermal exploration, as well as part of environmental and geotechnical studies.

<span class="mw-page-title-main">Petroleum reservoir</span> Subsurface pool of hydrocarbons

A petroleum reservoir or oil and gas reservoir is a subsurface accumulation of hydrocarbons contained in porous or fractured rock formations.

A wet gas is any gas with a small amount of liquid present. The term "wet gas" has been used to describe a range of conditions varying from a humid gas which is gas saturated with liquid vapour to a multiphase flow with a 90% volume of gas. There has been some debate as to its actual definition, and there is currently no fully defined quantitative definition of a wet gas flow that is universally accepted.

<span class="mw-page-title-main">Multiphase flow</span>

In fluid mechanics, multiphase flow is the simultaneous flow of materials with two or more thermodynamic phases. Virtually all processing technologies from cavitating pumps and turbines to paper-making and the construction of plastics involve some form of multiphase flow. It is also prevalent in many natural phenomena.

<span class="mw-page-title-main">Drill stem test</span>

A drill stem test (DST) is a procedure for isolating and testing the pressure, permeability and productive capacity of a geological formation during the drilling of a well. The test is an important measurement of pressure behaviour at the drill stem and is a valuable way of obtaining information on the formation fluid and establishing whether a well has found a commercial hydrocarbon reservoir.

<span class="mw-page-title-main">Reservoir engineering</span>

Reservoir engineering is a branch of petroleum engineering that applies scientific principles to the fluid flow through a porous medium during the development and production of oil and gas reservoirs so as to obtain a high economic recovery. The working tools of the reservoir engineer are subsurface geology, applied mathematics, and the basic laws of physics and chemistry governing the behavior of liquid and vapor phases of crude oil, natural gas, and water in reservoir rock. Of particular interest to reservoir engineers is generating accurate reserves estimates for use in financial reporting to the SEC and other regulatory bodies. Other job responsibilities include numerical reservoir modeling, production forecasting, well testing, well drilling and workover planning, economic modeling, and PVT analysis of reservoir fluids. Reservoir engineers also play a central role in field development planning, recommending appropriate and cost-effective reservoir depletion schemes such as waterflooding or gas injection to maximize hydrocarbon recovery. Due to legislative changes in many hydrocarbon-producing countries, they are also involved in the design and implementation of carbon sequestration projects in order to minimise the emission of greenhouse gases.

Geosteering is the optimal placement of a wellbore based on the results of realtime downhole geological and geophysical logging measurements rather than three-dimensional targets in space. The objective is usually to keep a directional wellbore within a hydrocarbon pay zone defined in terms of its resistivity, density or even biostratigraphy. In mature areas, geosteering may be used to keep a wellbore in a particular reservoir section to minimize gas or water breakthrough and maximize economic production from the well. In the process of drilling a borehole, geosteering is the act of adjusting the borehole position on the fly to reach one or more geological targets. These changes are based on geological information gathered while drilling.

Petrophysics is the study of physical and chemical rock properties and their interactions with fluids.

<span class="mw-page-title-main">Reservoir simulation</span> Using computer models to predict the flow of fluids through porous media

Reservoir simulation is an area of reservoir engineering in which computer models are used to predict the flow of fluids through porous media.

A multiphase flow meter is a device used to measure the individual phase flow rates of constituent phases in a given flow where oil, water and gas mixtures are initially co-mingled together during the oil production processes.

<span class="mw-page-title-main">Schiehallion oilfield</span>

The Schiehallion oilfield is a deepwater offshore oilfield approximately 175 kilometres (110 mi) west of the Shetland Islands in the North Atlantic Ocean. The Schiehallion and adjacent Loyal field were jointly developed by BP on behalf of the Schiehallion field partners; BP, Shell, Amerada Hess, Murphy Oil, Statoil and OMV, and the Loyal field partners; BP and Shell.

An oil production plant is a facility which processes production fluids from oil wells in order to separate out key components and prepare them for export. Typical oil well production fluids are a mixture of oil, gas and produced water. An oil production plant is distinct from an oil depot, which does not have processing facilities.

The term separator in oilfield terminology designates a pressure vessel used for separating well fluids produced from oil and gas wells into gaseous and liquid components. A separator for petroleum production is a large vessel designed to separate production fluids into their constituent components of oil, gas and water. A separating vessel may be referred to in the following ways: Oil and gas separator, Separator, Stage separator, Trap, Knockout vessel, Flash chamber, Expansion separator or expansion vessel, Scrubber, Filter. These separating vessels are normally used on a producing lease or platform near the wellhead, manifold, or tank battery to separate fluids produced from oil and gas wells into oil and gas or liquid and gas. An oil and gas separator generally includes the following essential components and features:

  1. A vessel that includes (a) primary separation device and/or section, (b) secondary "gravity" settling (separating) section, (c) mist extractor to remove small liquid particles from the gas, (d) gas outlet, (e) liquid settling (separating) section to remove gas or vapor from oil, (f) oil outlet, and (g) water outlet.
  2. Adequate volumetric liquid capacity to handle liquid surges (slugs) from the wells and/or flowlines.
  3. Adequate vessel diameter and height or length to allow most of the liquid to separate from the gas so that the mist extractor will not be flooded.
  4. A means of controlling an oil level in the separator, which usually includes a liquid-level controller and a diaphragm motor valve on the oil outlet.
  5. A back pressure valve on the gas outlet to maintain a steady pressure in the vessel.
  6. Pressure relief devices.

In 2017 the department was merged with the Department of Geology and Mineral Resources Engineering, forming the new Department of Geoscience and Petroleum.

Roxar AS was a provider of products and associated services for reservoir management and production optimisation in the upstream oil and gas industry. Roxar was headquartered in Stavanger, Norway and operated in 19 countries with around 900 employees. Roxar offered software for reservoir interpretation, modelling and simulation, as well as instrumentation for well planning, monitoring, metering and production optimisation. Roxar was acquired by Emerson Electric Company in April 2009.

In the petroleum industry, allocation refers to practices of breaking down measures of quantities of extracted hydrocarbons across various contributing sources. Allocation aids the attribution of ownerships of hydrocarbons as each contributing element to a commingled flow or to a storage of petroleum may have a unique ownership. Contributing sources in this context are typically producing petroleum wells delivering flows of petroleum or flows of natural gas to a commingled flow or storage.

In petroleum science, reservoir fluids are the fluids mixture contained within the petroleum reservoir which technically are placed in the reservoir rock. Reservoir fluids normally include liquid hydrocarbon, aqueous solutions with dissolved salt, hydrocarbon and non-hydrocarbon gases such as methane and hydrogen sulfide respectively.

Electrical capacitance volume tomography (ECVT) is a non-invasive 3D imaging technology applied primarily to multiphase flows. It was first introduced by W. Warsito, Q. Marashdeh, and L.-S. Fan as an extension of the conventional electrical capacitance tomography (ECT). In conventional ECT, sensor plates are distributed around a surface of interest. Measured capacitance between plate combinations is used to reconstruct 2D images (tomograms) of material distribution. In ECT, the fringing field from the edges of the plates is viewed as a source of distortion to the final reconstructed image and is thus mitigated by guard electrodes. ECVT exploits this fringing field and expands it through 3D sensor designs that deliberately establish an electric field variation in all three dimensions. The image reconstruction algorithms are similar in nature to ECT; nevertheless, the reconstruction problem in ECVT is more complicated. The sensitivity matrix of an ECVT sensor is more ill-conditioned and the overall reconstruction problem is more ill-posed compared to ECT. The ECVT approach to sensor design allows direct 3D imaging of the outrounded geometry. This is different than 3D-ECT that relies on stacking images from individual ECT sensors. 3D-ECT can also be accomplished by stacking frames from a sequence of time intervals of ECT measurements. Because the ECT sensor plates are required to have lengths on the order of the domain cross-section, 3D-ECT does not provide the required resolution in the axial dimension. ECVT solves this problem by going directly to the image reconstruction and avoiding the stacking approach. This is accomplished by using a sensor that is inherently three-dimensional.

References

  1. 1 2 3 Aghar, H et al (2007)
  2. 1 2 Langston, Leslie Vernon (2003). The lease pumper's handbook (PDF). Norman, Okla.: Oklahoma Commission on Marginally Producing Oil and Gas Wells.
  3. I. Atkinson; B. Theuveny; et al. (Spring 2005). "A New Horizon in Multiphase Flow Measurement" (PDF). Oilfield Review (A Schlumberger Magazine). 16 (4): 52–63. Retrieved 2013-05-23.
  4. Ron Cramer; Dave Schotanus; Kolin Ibrahim; Nick Colbeck (21 Dec 2009). "Continuous well-flow estimates improve production allocation" . Retrieved 2013-05-23.
  5. Ashutosh Tewari; Stijn De Waele; Niranjan Subrahmanya (May 2018). "Enhanced production surveillance using probabilistic dynamic models". International Journal of Prognostics and Health Management. 9 (1): 1–12.
  6. Thorn, R.; G. A. Johansen; B. T. Hjertaker (2013-01-01). "Three-phase flow measurement in the petroleum industry". Measurement Science and Technology. 24 (1): 012003. Bibcode:2013MeScT..24a2003T. doi:10.1088/0957-0233/24/1/012003. ISSN   0957-0233. S2CID   120658473.