Westbrook Nebula

Last updated
Westbrook Nebula
Reflection nebula
Protoplanetary nebula
Westbrook Nebula.tif
Hubble image of the Westbrook Nebula
Observation data: J2000 epoch
Right ascension 04h 42m 53.64s [1]
Declination +36° 06 53.4 [1]
Constellation Auriga
DesignationsCRL 618, IRAS 04395+3601, 2MASS J04425364+3606534, RAFGL 618 [1]
See also: Lists of nebulae

Westbrook Nebula (CRL 618) is a bipolar protoplanetary nebula which is located in the constellation Auriga. It is being formed by a star that has passed through the red giant phase and has ceased nuclear fusion at its core. This star is concealed at the center of the nebula, and is ejecting gas and dust at velocities of up to 200 km/s. [2] The nebula is named after William E. Westbrook, who died in 1975. [3]

Two spectra of carbon monoxide in the Westbrook Nebula are shown. The component shown in yellow arises from the slow wind from the star's AGB phase. The component shown in red is from the faster wind expelled after the star left the AGB. Adapted from Gammie et al.. CRL618FastWind2Colored.png
Two spectra of carbon monoxide in the Westbrook Nebula are shown. The component shown in yellow arises from the slow wind from the star's AGB phase. The component shown in red is from the faster wind expelled after the star left the AGB. Adapted from Gammie et al..

This nebula began to form about 200 years ago, and primarily consists of molecular gas. The outer part of the nebula is the result of interaction between rapid bipolar outflow and the gas that was ejected when the star was passing through its asymptotic giant branch phase. The lobes are inclined about 24° to the line of sight. The energy being radiated from the nebula consists of scattered light from the star at the core, light being emitted from a compact HII region surrounding the star, and energy from the shock-excited gas in the lobes. [5]

The dynamics of the molecular gas envelope can be studied by examining microwave emission-line spectra from carbon monoxide rotational transitions. These spectra show two distinct velocity components. The narrow cores of the spectral lines show the familiar parabolic profile of a slow (20 km/sec), high optical depth stellar wind from an Asymptotic Giant Branch (AGB) star. This material was expelled before the object became a protoplanetary nebula and constitutes the bulk of the nebula's mass. A second component arising from the far faster post-AGB wind is also visible. The fast (>190 km/sec) wind component becomes more prominent in higher frequency, higher energy spectral lines, because the fast wind has a higher temperature than the slow AGB wind. [4]

The central star is believed to be of spectral class B0 and has 12,200 times the solar luminosity. [5] The photosphere of this star is now hot enough to have begun ionizing the nebula, and the ionization region is expanding rapidly. The size and rate of growth indicates that ionization began around the year 1971. [6] Once a sizeable portion of the nebula has been ionized, it will have become a planetary nebula. This means the Westbrook Nebula is at a somewhat more advanced evolutionary stage than the Egg Nebula, whose spectral class F5 star has not yet begun to ionize the nebula material.

Related Research Articles

<span class="mw-page-title-main">Nebula</span> Body of interstellar clouds

A nebula is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the "Pillars of Creation" in the Eagle Nebula. In these regions, the formations of gas, dust, and other materials "clump" together to form denser regions, which attract further matter, and eventually will become dense enough to form stars. The remaining material is then thought to form planets and other planetary system objects.

<span class="mw-page-title-main">Planetary nebula</span> Type of emission nebula

A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives.

<span class="mw-page-title-main">H II region</span> Large, low-density interstellar cloud of partially ionized gas

An H II region or HII region is a region of interstellar atomic hydrogen that is ionized. It is typically in a molecular cloud of partially ionized gas in which star formation has recently taken place, with a size ranging from one to hundreds of light years, and density from a few to about a million particles per cubic centimetre. The Orion Nebula, now known to be an H II region, was observed in 1610 by Nicolas-Claude Fabri de Peiresc by telescope, the first such object discovered.

<span class="mw-page-title-main">NGC 2346</span> Planetary nebula in the constellation Monoceros

NGC 2346 is a planetary nebula near the celestial equator in the constellation of Monoceros, less than a degree to the ESE of Delta Monocerotis. It is informally known as the Butterfly Nebula. The nebula is bright and conspicuous with a visual magnitude of 9.6, and has been extensively studied. Among its most remarkable characteristics is its unusually cool central star, which is a spectroscopic binary, and its unusual shape.

<span class="mw-page-title-main">M2-9</span> Planetary nebula

Minkowski 2-9, abbreviated M2-9 is a planetary nebula that was discovered by Rudolph Minkowski in 1947. It is located about 2,100 light-years away from Earth in the direction of the constellation Ophiuchus. This bipolar nebula takes the peculiar form of twin lobes of material that emanate from a central star. Astronomers have dubbed this object as the Twin Jet Nebula because of the jets believed to cause the shape of the lobes. Its form also resembles the wings of a butterfly. The nebula was imaged by the Hubble Space Telescope in the 1990s.

<span class="mw-page-title-main">Egg Nebula</span>

The Egg Nebula is a bipolar protoplanetary nebula approximately 3,000 light-years away from Earth. Its peculiar properties were first described in 1975 using data from the 11 µm survey obtained with sounding rocket by Air Force Geophysical Laboratory (AFGL) in 1971 to 1974.

<span class="mw-page-title-main">Asymptotic giant branch</span> Stars powered by fusion of hydrogen and helium in shell with an inactive core of carbon and oxygen

The asymptotic giant branch (AGB) is a region of the Hertzsprung–Russell diagram populated by evolved cool luminous stars. This is a period of stellar evolution undertaken by all low- to intermediate-mass stars (about 0.5 to 8 solar masses) late in their lives.

<span class="mw-page-title-main">Herbig–Haro object</span> Small patches of nebulosity associated with newly born stars

Herbig–Haro (HH) objects are bright patches of nebulosity associated with newborn stars. They are formed when narrow jets of partially ionised gas ejected by stars collide with nearby clouds of gas and dust at several hundred kilometres per second. Herbig–Haro objects are commonly found in star-forming regions, and several are often seen around a single star, aligned with its rotational axis. Most of them lie within about one parsec of the source, although some have been observed several parsecs away. HH objects are transient phenomena that last around a few tens of thousands of years. They can change visibly over timescales of a few years as they move rapidly away from their parent star into the gas clouds of interstellar space. Hubble Space Telescope observations have revealed the complex evolution of HH objects over the period of a few years, as parts of the nebula fade while others brighten as they collide with the clumpy material of the interstellar medium.

<span class="mw-page-title-main">Protoplanetary nebula</span> Nebula surrounding a dying star

A protoplanetary nebula or preplanetary nebula is an astronomical object which is at the short-lived episode during a star's rapid evolution between the late asymptotic giant branch (LAGB) phase and the subsequent planetary nebula (PN) phase. A PPN emits strongly in infrared radiation, and is a kind of reflection nebula. It is the second-from-the-last high-luminosity evolution phase in the life cycle of intermediate-mass stars.

<span class="mw-page-title-main">Red Rectangle Nebula</span> Protoplanetary nebula in the constellation Monoceros

The Red Rectangle Nebula, so called because of its red color and unique rectangular shape, is a protoplanetary nebula in the Monoceros constellation. Also known as HD 44179, the nebula was discovered in 1973 during a rocket flight associated with the AFCRL Infrared Sky Survey called Hi Star. The binary system at the center of the nebula was first discovered by Robert Grant Aitken in 1915.

<span class="mw-page-title-main">Bipolar outflow</span> Two continuous flows of gas from the poles of a star

A bipolar outflow comprises two continuous flows of gas from the poles of a star. Bipolar outflows may be associated with protostars, or with evolved post-AGB stars.

<span class="mw-page-title-main">Bipolar nebula</span> Type of nebula that has two lobes extending from a central star

A bipolar nebula is a type of nebula characterized by two lobes either side of a central star. About 10-20% of planetary nebulae are bipolar.

<span class="mw-page-title-main">HH 46/47</span> Herbig-Haro objects in the constellation Vela

HH 46/47 is a complex of Herbig–Haro objects, located around 450 parsecs away in a Bok globule near the Gum nebula. Jets of partially ionized gas emerging from a young star produce visible shocks upon impact with the ambient medium. Discovered in 1977, it is one of the most studied HH objects and the first jet to be associated with young stars was found in HH 46/47. Four emission nebula, HH 46, HH 47A, HH 47C and HH 47D and a jet, HH 47B, have been identified in the complex. It also contains a mostly unipolar molecular outflow, and two large bow shocks on opposite sides of the source star. The overall size of the complex is about 3 parsecs.

<span class="mw-page-title-main">S-type star</span> Cool giant with approximately equal quantities of carbon and oxygen in its atmosphere

An S-type star is a cool giant with approximately equal quantities of carbon and oxygen in its atmosphere. The class was originally defined in 1922 by Paul Merrill for stars with unusual absorption lines and molecular bands now known to be due to s-process elements. The bands of zirconium monoxide (ZrO) are a defining feature of the S stars.

<span class="mw-page-title-main">V Hydrae</span> Variable star in the constellation Hydra

V Hydrae is a carbon star in the constellation Hydra. To date perhaps uniquely in our galaxy it has plasma ejections/eruptions on a grand scale every 8.5 years caused by its near, unseen companion in an 8.5 year orbit, inferred by its ultraviolet excess and periastron passage likely through the outer parts of the star itself.

<span class="mw-page-title-main">O-type star</span> Stellar classification

An O-type star is a hot, blue-white star of spectral type O in the Yerkes classification system employed by astronomers. They have temperatures in excess of 30,000 kelvin (K). Stars of this type have strong absorption lines of ionised helium, strong lines of other ionised elements, and hydrogen and neutral helium lines weaker than spectral type B.

<span class="mw-page-title-main">IRAS 19475+3119</span> Nebula in the constellation Cygnus

IRAS 19475+3119 is a protoplanetary nebula in the constellation of Cygnus, 15,000 light-years away. The central star, V2513 Cygni, is an F-type post-AGB star.

<span class="mw-page-title-main">KjPn 8</span>

KjPn 8 is a bipolar planetary nebula which was discovered by M.A. Kazaryan and Eh. S. Parsamyan in 1971 and independently by Luboš Kohoutek in 1972.

<span class="mw-page-title-main">HM Sagittae</span> Symbiotic nova in the constellation of Sagitta

HM Sagittae is a dusty-type symbiotic nova in the northern constellation of Sagitta. It was discovered by O. D. Dokuchaeva and colleagues in 1975 when it increased in brightness by six magnitudes. The object displays an emission line spectrum similar to a planetary nebula and was detected in the radio band in 1977. Unlike a classical nova, the optical brightness of this system did not rapidly decrease with time, although it showed some variation. It displays activity in every band of the electromagnetic spectrum from X-ray to radio.

<span class="mw-page-title-main">CIT 6</span> Carbon star in the constellation Leo Minor

CIT 6 is a carbon star in the constellation Leo Minor. It is a semiregular variable star, with a period of about 628 days, and has been given the variable star designation RW Leonis Minoris. It is perhaps the second most studied carbon star, after CW Leonis. CIT 6 was discovered in 1966 by a group at the California Institute of Technology who found it using the same 62-inch infrared telescope on Mount Wilson that was used to produce the Two-Micron Sky Survey. It is the second brightest carbon star in the near-infrared, after CW Leonis.

References

  1. 1 2 3 "Westbrook Nebula -- Post-AGB Star". SIMBAD. Centre de Données astronomiques de Strasbourg. Retrieved 2009-04-16.
  2. Christensen, Lars Lindberg; Tielens, A.G.G.M. (2000-08-31). "A stellar cocoon soon to hatch to a butterfly". European Space Agency . Retrieved 2013-06-12.
  3. Westbrook, W. E.; Gezari, D. Y.; Hauser, M. G.; Werner, M. W.; Elias, J. H.; Neugebauer, G.; et al. (1976). "One-millimeter continuum emission studies of four molecular clouds". Astrophysical Journal. 209: 94–101. Bibcode:1976ApJ...209...94W. doi:10.1086/154695.
  4. 1 2 Gammie, C.F.; Knapp, G.R.; Young, K.; Phillips, T.G.; Falgarone, E. (October 1989). "A Very Fast Molecular Outflow from the Proto-Planetary Nebula CRL 618". The Astrophysical Journal. 345: L87–L89. doi:10.1086/185559 . Retrieved 15 November 2020.
  5. 1 2 Contreras, C. S.; Sahai, R.; Gil de Paz, A. (October 2002). "Physical structure of the protoplanetary nebula CRL618. I. Optical long-slit spectroscopy and imaging". Astrophysical Journal. 578 (1): 269–289. arXiv: astro-ph/0206200 . Bibcode:2002ApJ...578..269S. doi:10.1086/342316. S2CID   6798962.
  6. Tafoya, D.; Loinard, L.; Vlemmings, W.H.T.; Marti-Vidal, I.; Pech, G. (22 July 2013). "Rapid angular expansion of the ionized core of CRL 618" (PDF). Astronomy and Astrophysics. 556: A35. doi: 10.1051/0004-6361/201321704 . Retrieved 15 November 2020.