Wireless distribution system

Last updated

A wireless distribution system (WDS) is a system enabling the wireless interconnection of access points in an IEEE 802.11 network. It allows a wireless network to be expanded using multiple access points without the traditional requirement for a wired backbone to link them. The notable advantage of WDS over other solutions is that it preserves the MAC addresses of client frames across links between access points. [1]

Contents

An access point can be either a main, relay, or remote base station.

All base stations in a wireless distribution system must be configured to use the same radio channel, method of encryption (none, WEP, WPA or WPA2) and the same encryption keys. They may be configured to different service set identifiers (SSIDs). WDS also requires every base station to be configured to forward to others in the system.

WDS may also be considered a repeater mode because it appears to bridge and accept wireless clients at the same time (unlike traditional bridging). However, with the repeater method, throughput is halved for all clients connected wirelessly. This is because Wi-Fi is an inherently half duplex medium and therefore any Wi-Fi device functioning as a repeater must use the Store and forward method of communication.

WDS may be incompatible between different products (even occasionally from the same vendor) since the IEEE 802.11-1999 standard does not define how to construct any such implementations or how stations interact to arrange for exchanging frames of this format. The IEEE 802.11-1999 standard merely defines the 4-address frame format that makes it possible. [2]

Technical

WDS may provide two modes of access point-to-access point (AP-to-AP) connectivity:

Two disadvantages to using WDS are:

OpenWRT, a universal third party router firmware, supports WDS with WPA-PSK, WPA2-PSK, WPA-PSK/WPA2-PSK Mixed-Mode encryption modes. Recent Apple base stations allow WDS with WPA, though in some cases firmware updates are required. Firmware for the Renasis SAP36g super access point and most third party firmware for the Linksys WRT54G(S)/GL support AES encryption using WPA2-PSK mixed-mode security, and TKIP encryption using WPA-PSK, while operating in WDS mode. However, this mode may not be compatible with other units running stock or alternate firmware.

Example

Suppose one has a Wi-Fi-capable game console. This device needs to send one packet to a WAN host, and receive one packet in reply.

Notice that network 1 (non-WDS) and network 3 (WDS) send the same number of packets over-the-air. The only slowdown is the potential halving due to the half-duplex nature of Wi-Fi. [3]

Network 2 gets an additional halving because the remote base station uses double the air time because it is re-transmitting over-the-air packets that it has just received over-the-air. This is the halving that is usually attributed to WDS, but that halving only happens when the route through a base station uses over-the-air links on both sides of it. That does not always happen in a WDS, and can happen in non-WDS.

Important Note: This "double hop" (one wireless hop from the main station to the remote station, and a second hop from the remote station to the wireless client [game console]) is not necessarily twice as slow. End to end latency introduced here is in the "store and forward" delay associated with the remote station forwarding packets. In order to accurately identify the true latency contribution of relaying through a wireless remote station vs. simply increasing the broadcast power of the main station, more comprehensive tests specific to the environment would be required.

See also

Related Research Articles

<span class="mw-page-title-main">Wireless LAN</span> Computer network that links devices using wireless communication within a limited area

A wireless LAN (WLAN) is a wireless computer network that links two or more devices using wireless communication to form a local area network (LAN) within a limited area such as a home, school, computer laboratory, campus, or office building. This gives users the ability to move around within the area and remain connected to the network. Through a gateway, a WLAN can also provide a connection to the wider Internet.

<span class="mw-page-title-main">Wake-on-LAN</span> Mechanism to wake up computers via a network

Wake-on-LAN is an Ethernet or Token Ring computer networking standard that allows a computer to be turned on or awakened by a network message.

<span class="mw-page-title-main">AirPort</span> Discontinued line of products by Apple Inc.

AirPort is a discontinued line of wireless routers and network cards developed by Apple Inc. using Wi-Fi protocols. In Japan, the line of products was marketed under the brand AirMac due to previous registration by I-O Data.

<span class="mw-page-title-main">Wi-Fi</span> Wireless local area network

Wi-Fi is a family of wireless network protocols based on the IEEE 802.11 family of standards, which are commonly used for local area networking of devices and Internet access, allowing nearby digital devices to exchange data by radio waves. These are the most widely used computer networks in the world, used globally in home and small office networks to link desktop and laptop computers, tablet computers, smartphones, smart TVs, printers, and smart speakers together and to a wireless router to connect them to the Internet, and in wireless access points in public places like coffee shops, hotels, libraries, and airports to provide visitors with Internet connectivity for their mobile devices.

<span class="mw-page-title-main">Wireless access point</span> Device that allows wireless devices to connect to a wired network

In computer networking, a wireless access point (WAP), or more generally just access point (AP), is a networking hardware device that allows other Wi-Fi devices to connect to a wired network. As a standalone device, the AP may have a wired connection to a router, but, in a wireless router, it can also be an integral component of the router itself. An AP is differentiated from a hotspot which is a physical location where Wi-Fi access is available.

Wired Equivalent Privacy (WEP) was a security algorithm for 802.11 wireless networks. Introduced as part of the original IEEE 802.11 standard ratified in 1997, its intention was to provide data confidentiality comparable to that of a traditional wired network. WEP, recognizable by its key of 10 or 26 hexadecimal digits, was at one time widely used, and was often the first security choice presented to users by router configuration tools.

Wi-Fi Protected Access (WPA), Wi-Fi Protected Access II (WPA2), and Wi-Fi Protected Access 3 (WPA3) are the three security and security certification programs developed after 2000 by the Wi-Fi Alliance to secure wireless computer network. The Alliance defined these in response to serious weaknesses researchers had found in the previous system, Wired Equivalent Privacy (WEP).

IEEE 802.11i-2004, or 802.11i for short, is an amendment to the original IEEE 802.11, implemented as Wi-Fi Protected Access II (WPA2). The draft standard was ratified on 24 June 2004. This standard specifies security mechanisms for wireless networks, replacing the short Authentication and privacy clause of the original standard with a detailed Security clause. In the process, the amendment deprecated broken Wired Equivalent Privacy (WEP), while it was later incorporated into the published IEEE 802.11-2007 standard.

IEEE 802.11r-2008 or fast BSS transition (FT), is an amendment to the IEEE 802.11 standard to permit continuous connectivity aboard wireless devices in motion, with fast and secure client transitions from one Basic Service Set to another performed in a nearly seamless manner. It was published on July 15, 2008. IEEE 802.11r-2008 was rolled up into 802.11-2012. The terms handoff and roaming are often used, although 802.11 transition is not a true handoff/roaming process in the cellular sense, where the process is coordinated by the base station and is generally uninterrupted.

<span class="mw-page-title-main">Wireless network interface controller</span> Hardware component that connects a computer to a wireless computer network

A wireless network interface controller (WNIC) is a network interface controller which connects to a wireless network, such as Wi-Fi or Bluetooth, rather than a wired network, such as a Token Ring or Ethernet. A WNIC, just like other NICs, works on the layers 1 and 2 of the OSI model and uses an antenna to communicate via radio waves.

<span class="mw-page-title-main">Wireless security</span> Aspect of wireless networks

Wireless security is the prevention of unauthorized access or damage to computers or data using wireless networks, which include Wi-Fi networks. The term may also refer to the protection of the wireless network itself from adversaries seeking to damage the confidentiality, integrity, or availability of the network. The most common type is Wi-Fi security, which includes Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA). WEP is an old IEEE 802.11 standard from 1997. It is a notoriously weak security standard: the password it uses can often be cracked in a few minutes with a basic laptop computer and widely available software tools. WEP was superseded in 2003 by WPA, a quick alternative at the time to improve security over WEP. The current standard is WPA2; some hardware cannot support WPA2 without firmware upgrade or replacement. WPA2 uses an encryption device that encrypts the network with a 256-bit key; the longer key length improves security over WEP. Enterprises often enforce security using a certificate-based system to authenticate the connecting device, following the standard 802.11X.

<span class="mw-page-title-main">High-speed multimedia radio</span>

High-speed multimedia radio (HSMM) is the implementation of high-speed wireless TCP/IP data networks over amateur radio frequency allocations using commercial off-the-shelf (COTS) hardware such as 802.11 Wi-Fi access points. This is possible because the 802.11 unlicensed frequency bands partially overlap with amateur radio bands and ISM bands in many countries. Only licensed amateur radio operators may legally use amplifiers and high-gain antennas within amateur radio frequencies to increase the power and coverage of an 802.11 signal.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. The computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies, based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

<span class="mw-page-title-main">SpeedTouch</span> Brand name of a line of networking equipment

SpeedTouch is the brand name of a line of networking equipment produced by Alcatel and Technicolor SA. Before 27 January 2010 Technicolor was known as Thomson SA.

In a hierarchical telecommunications network, the backhaul portion of the network comprises the intermediate links between the core network, or backbone network, and the small subnetworks at the edge of the network.

The DG834 series are popular ADSL modem router products from Netgear. The devices can be directly connected to the phone line and establish an ADSL broadband Internet connection to the ISP and share it among several computers via 802.3 Ethernet and 802.11b/g wireless data links.

tomato (firmware) Custom consumer network appliance firmware

Tomato is a family of community-developed, custom firmware for consumer-grade computer networking routers and gateways powered by Broadcom chipsets. The firmware has been continually forked and modded by multiple individuals and organizations, with the most up-to-date fork provided by the FreshTomato project.

Long-range Wi-Fi is used for low-cost, unregulated point-to-point computer network connections, as an alternative to other fixed wireless, cellular networks or satellite Internet access.

<span class="mw-page-title-main">Wireless repeater</span> Wireless computer networking device

A wireless repeater is a device that takes an existing signal from a wireless router or wireless access point and rebroadcasts it to create a second network. When two or more hosts have to be connected with one another over the IEEE 802.11 protocol and the distance is too long for a direct connection to be established, a wireless repeater is used to bridge the gap. It can be a specialized stand-alone computer networking device. Also, some wireless network interface controllers (WNIC)s optionally support operating in such a mode. Those outside of the primary network will be able to connect through the new "repeated" network. However, as far as the original router or access point is concerned, only the repeater MAC is connected, making it necessary to enable safety features on the wireless repeater. Wireless repeaters are commonly used to improve signal range and strength within homes and small offices.

Linksys manufactures a series of network routers. Many models are shipped with Linux-based firmware and can run third-party firmware. The first model to support third-party firmware was the very popular Linksys WRT54G series.

References