Wolfgang Prinz

Last updated
Wolfgang Prinz
Wolfgang Prinz.jpg
Born24 September 1942
Nationality German
Alma mater University of Münster
Known forThe common coding theory
AwardsGottfried Wilhelm Leibniz Award of the German Research Foundation
Scientific career
Fields Cognitive Psychology
Institutions Max Planck Institute (professor, director)

Wolfgang Prinz (born 24 September 1942) is a German cognitive psychologist. He is the director of the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, Germany, and an internationally recognized expert in experimental psychology, cognitive psychology and philosophy of mind. He is the founder of the common coding theory between perception and action that has a significant impact in cognitive neuroscience and social cognition.

Contents

Background

Wolfgang Prinz studied Psychology, Philosophy and Zoology at the University of Münster (Germany) from 1962 to 1966, and was awarded a doctorate from the Ruhr University in Bochum, Germany, in 1970. Prinz was a director of the Max Planck Institute for Psychological Research Munich, Germany, from 1990 to 2004. Since 2004 he has been a director at the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

Memberships in Research Councils and Societies

Academia Europaea; German Academy of Natural Scientist Leopoldina, Halle (Saale), Germany; Scientific Advisory Board of the Centre for Interdisciplinary Research (ZiF), University of Bielefeld, Germany; Advisory Board of the Dean, School of Humanities and Social Sciences, Jacobs University Bremen, Germany; Honorary Member of the European Society of Psychology (ESCoP); Psychonomic Society; German Society of Psychology (DGPs).

Academic achievements

Prinz is the father of the common coding theory. This theory claims parity between perception and action. Its core assumption is that actions are coded in terms of the perceivable effects (i.e., the distal perceptual events) they should generate [2] [3] [4] Performing a movement leaves behind a bidirectional association between the motor pattern it has generated by and the sensory effects that it produces. Such an association can then be used backwards to retrieve a movement by anticipating its effects. [5] These perception/action codes are also accessible during action observation (for an historical account of the ideo-motor principle, see [6] Observation of an action should activate action representations to the degree that the perceived and the represented action are similar. [7] Such a claim suggests that we represent observed, executed and imagined actions in a commensurate manner and makes specific predictions regarding the nature of action and perceptual representations. First, representations for observed and executed actions should rely on a shared neural substrate. Second, a common cognitive system predicts interference effects when action and perception attempt to access shared representations simultaneously. Third, such a system predicts facilitation of action based on directly prior perception and vice versa.

The common coding theory has received strong support from a variety of empirical studies in developmental psychology, [8] cognitive neuroscience, [9] cognitive science [10] and neurophysiology. [11] This theory is at the core of what has been called Motor cognition. In neuroscience, evidence for the common coding theory ranges from electrophysiological recordings in monkeys in which mirror neurons in the ventral premotor and posterior parietal cortices fire both during goal-directed actions and observation of the same actions performed by another individual, [12] to functional neuroimaging experiments in humans which indicate that the neural circuits involved in action execution partly overlap with those activated when actions are observed. [13]

Selected works

See also

Related Research Articles

<span class="mw-page-title-main">Cognitive science</span> Interdisciplinary scientific study of the mind, the gut and its processes

Cognitive science is the interdisciplinary, scientific study of the mind and its processes with input from linguistics, psychology, neuroscience, philosophy, computer science/artificial intelligence, and anthropology. It examines the nature, the tasks, and the functions of cognition. Cognitive scientists study intelligence and behavior, with a focus on how nervous systems represent, process, and transform information. Mental faculties of concern to cognitive scientists include language, perception, memory, attention, reasoning, and emotion; to understand these faculties, cognitive scientists borrow from fields such as linguistics, psychology, artificial intelligence, philosophy, neuroscience, and anthropology. The typical analysis of cognitive science spans many levels of organization, from learning and decision to logic and planning; from neural circuitry to modular brain organization. One of the fundamental concepts of cognitive science is that "thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures."

<span class="mw-page-title-main">Gestalt psychology</span> Theory of perception

Gestalt psychology, gestaltism, or configurationism is a school of psychology that emerged in the early twentieth century in Austria and Germany as a theory of perception that was a rejection of basic principles of Wilhelm Wundt's and Edward Titchener's elementalist and structuralist psychology.

A mental image is an experience that, on most occasions, significantly resembles the experience of 'perceiving' some object, event, or scene, but occurs when the relevant object, event, or scene is not actually present to the senses. There are sometimes episodes, particularly on falling asleep and waking up, when the mental imagery may be dynamic, phantasmagoric and involuntary in character, repeatedly presenting identifiable objects or actions, spilling over from waking events, or defying perception, presenting a kaleidoscopic field, in which no distinct object can be discerned. Mental imagery can sometimes produce the same effects as would be produced by the behavior or experience imagined.

The cognitive revolution was an intellectual movement that began in the 1950s as an interdisciplinary study of the mind and its processes. It later became known collectively as cognitive science. The relevant areas of interchange were between the fields of psychology, linguistics, computer science, anthropology, neuroscience, and philosophy. The approaches used were developed within the then-nascent fields of artificial intelligence, computer science, and neuroscience. In the 1960s, the Harvard Center for Cognitive Studies and the Center for Human Information Processing at the University of California, San Diego were influential in developing the academic study of cognitive science. By the early 1970s, the cognitive movement had surpassed behaviorism as a psychological paradigm. Furthermore, by the early 1980s the cognitive approach had become the dominant line of research inquiry across most branches in the field of psychology.

Lawrence W. Barsalou is an American psychologist and a cognitive scientist, currently working at the University of Glasgow.

<span class="mw-page-title-main">Jean Decety</span>

Jean Decety is an American-French neuroscientist specializing in developmental neuroscience, affective neuroscience, and social neuroscience. His research focuses on the psychological and neurobiological mechanisms underpinning social cognition, particularly social decision-making, empathy, moral reasoning, altruism, pro-social behavior, and more generally interpersonal relationships. He is Irving B. Harris Distinguished Service Professor at the University of Chicago.

<span class="mw-page-title-main">Max Planck Institute for Human Cognitive and Brain Sciences</span>

The Max Planck Institute for Human Cognitive and Brain Sciences is located in Leipzig, Germany. The institute was founded in 2004 by a merger between the former Max Planck Institute of Cognitive Neuroscience in Leipzig and the Max Planck Institute for Psychological Research in Munich. It is one of 86 institutes in the Max Planck Society.

<span class="mw-page-title-main">Max Planck Institute for Psycholinguistics</span>

The Max Planck Institute for Psycholinguistics is a research institute situated on the campus of Radboud University Nijmegen located in Nijmegen, Gelderland, the Netherlands. The institute was founded in 1980 by Pim Levelt, and is particular for being entirely dedicated to psycholinguistics, and is also one of the few institutes of the Max Planck Society to be located outside Germany. The Nijmegen-based institute currently occupies 5th position in the Ranking Web of World Research Centers among all Max Planck institutes. It currently employs about 235 people.

<span class="mw-page-title-main">John T. Cacioppo</span> American academic

John Terrence Cacioppo was the Tiffany and Margaret Blake Distinguished Service Professor at the University of Chicago. He founded the University of Chicago Center for Cognitive and Social Neuroscience and was the director of the Arete Initiative of the Office of the Vice President for Research and National Laboratories at the University of Chicago. He co-founded the field of social neuroscience and was member of the department of psychology, department of psychiatry and behavioral neuroscience, and the college until his death in March 2018.

The concept of motor cognition grasps the notion that cognition is embodied in action, and that the motor system participates in what is usually considered as mental processing, including those involved in social interaction. The fundamental unit of the motor cognition paradigm is action, defined as the movements produced to satisfy an intention towards a specific motor goal, or in reaction to a meaningful event in the physical and social environments. Motor cognition takes into account the preparation and production of actions, as well as the processes involved in recognizing, predicting, mimicking, and understanding the behavior of other people. This paradigm has received a great deal of attention and empirical support in recent years from a variety of research domains including embodied cognition, developmental psychology, cognitive neuroscience, and social psychology.

<span class="mw-page-title-main">Marc Jeannerod</span>

Marc Jeannerod was a neurologist, a neurophysiologist and an internationally recognized expert in cognitive neuroscience and experimental psychology. His research focuses on the cognitive and neurophysiological mechanisms underpinning motor control, motor cognition, the sense of agency, and more recently language and social cognition. Jeannerod's work bridges with elegance and rigor various levels of analysis, ranging from neuroscience to philosophy of mind, with clear implications for the understanding of a number of psychiatric and neurological disorders, especially schizophrenia.

Common coding theory is a cognitive psychology theory describing how perceptual representations and motor representations are linked. The theory claims that there is a shared representation for both perception and action. More important, seeing an event activates the action associated with that event, and performing an action activates the associated perceptual event.

<span class="mw-page-title-main">Howard Nusbaum</span>

Howard C. Nusbaum is professor at the University of Chicago, United States in the Department of Psychology and its College, and a steering committee member of the Neuroscience Institute. Nusbaum is an internationally recognized expert in cognitive psychology, speech science, and in the new field of social neuroscience. Nusbaum investigates the cognitive and neural mechanisms that mediate spoken language use, as well as language learning and the role of attention in speech perception. In addition, he investigates how we understand the meaning of music, and how cognitive and social-emotional processes interact in decision-making.

Motor imagery is a mental process by which an individual rehearses or simulates a given action. It is widely used in sport training as mental practice of action, neurological rehabilitation, and has also been employed as a research paradigm in cognitive neuroscience and cognitive psychology to investigate the content and the structure of covert processes that precede the execution of action. In some medical, musical, and athletic contexts, when paired with physical rehearsal, mental rehearsal can be as effective as pure physical rehearsal (practice) of an action.

The Max Planck Institute for Psychological Research was a research institute of the Max Planck Society formerly located in Munich in Germany.

<span class="mw-page-title-main">Basic science (psychology)</span> Subdisciplines within psychology

Some of the research that is conducted in the field of psychology is more "fundamental" than the research conducted in the applied psychological disciplines, and does not necessarily have a direct application. The subdisciplines within psychology that can be thought to reflect a basic-science orientation include biological psychology, cognitive psychology, neuropsychology, and so on. Research in these subdisciplines is characterized by methodological rigor. The concern of psychology as a basic science is in understanding the laws and processes that underlie behavior, cognition, and emotion. Psychology as a basic science provides a foundation for applied psychology. Applied psychology, by contrast, involves the application of psychological principles and theories yielded up by the basic psychological sciences; these applications are aimed at overcoming problems or promoting well-being in areas such as mental and physical health and education.

<span class="mw-page-title-main">Embodied cognition</span> Interdisciplinary theory

Embodied cognition is the theory that many features of cognition, whether human or otherwise, are shaped by aspects of an organism's entire body. Sensory and motor systems are seen as fundamentally integrated with cognitive processing. The cognitive features include high-level mental constructs and performance on various cognitive tasks. The bodily aspects involve the motor system, the perceptual system, the bodily interactions with the environment (situatedness), and the assumptions about the world built into the organism's functional structure.

Social cognitive neuroscience is the scientific study of the biological processes underpinning social cognition. Specifically, it uses the tools of neuroscience to study "the mental mechanisms that create, frame, regulate, and respond to our experience of the social world". Social cognitive neuroscience uses the epistemological foundations of cognitive neuroscience, and is closely related to social neuroscience. Social cognitive neuroscience employs human neuroimaging, typically using functional magnetic resonance imaging (fMRI). Human brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct-current stimulation are also used. In nonhuman animals, direct electrophysiological recordings and electrical stimulation of single cells and neuronal populations are utilized for investigating lower-level social cognitive processes.

Binding and Retrieval in Action Control (BRAC) is a theoretical framework to explain basic psychological functions at the intersection of perception and motor control. It takes a cognitive approach by capturing how events are represented in the cognitive system. Its two core mechanisms – binding and retrieval of feature codes – explain a variety of observations in basic psychological experiments within a compact and parsimonious framework.

References

  1. Prof. Dr. Wolfgang Prinz. Max-Planck-Gesellschaft.
  2. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129-154.
  3. Prinz, W. (2003). Experimental approaches to action. In J. Roessler & N. Eilan (Eds.). Agency and Self-awareness (pp. 175-187). Oxford: Oxford University Press.
  4. Hommel, B., Müsseler, Aschersleben, G. and Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849-937.
  5. Hommel, B. (2004). Event files: feature binding in and across perception and action. Trends in Cognitive Sciences, 8, 494-500.
  6. Stock, A. & Stock, C. (2004). A short history of the ideo-motor action. Psychological Research, 68, 176-188.
  7. Knoblich, G. & Flach, R. (2001). Predicting the effects of actions: interactions of perception and action. Psychological Science, 12, 467-472.
  8. Sommerville, J. A., & Decety, J. (2006). Weaving the fabric of social interaction: Articulating developmental psychology and cognitive neuroscience in the domain of motor cognition. Psychonomic Bulletin & Review, 13, 179-200.
  9. Brass, M., Schmitt, R., Spengler, S. & Gergely, G. (2007). Investigating action understanding: inferential processes versus motor simulation. Current Biology 17, 24, 2117-2121.
  10. Knoblich, G., & Sebanz, N. (2006). The social nature of perception and action. Current Directions in Psychological Science, 15, 99-104.
  11. Sebanz, N., Knoblich, G., Prinz, W., & Wascher, E. (2006). Twin Peaks: An ERP study of action planning and control in co-acting individuals. Journal of Cognitive Neuroscience, 18, 859-870.
  12. Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and the imitation of action. Nature Review Neuroscience, 2, 661-670.
  13. Decety, J., & Grèzes, J. (2006). The power of simulation: Imagining one’s own and other’s behavior. Brain Research, 1079, 4-14.