Xocomecatlite

Last updated
Xocomecatlite
Xocomecatlite-616339.jpg
Xocomecatlite (green) in quartz matrix, collected from Trixie Mine, East Tintic District, East Tintic Mountains, Utah, United States
General
CategoryTellurate mineral
Formula
(repeating unit)
Cu3(TeO4)(OH)4
IMA symbol Xco [1]
Strunz classification 7.BB.50
Crystal system Orthorhombic
Unknown space group
Unit cell a = 12.14  Å, b = 14.31 Å
c = 11.66 Å; Z = 12
Identification
Formula mass 450.26 g/mol
ColorGreen, emerald green
Crystal habit Aggregates of radial to spherulitic or botryoidal acicular crystals
Tenacity Brittle
Mohs scale hardness4
Streak light green
Diaphaneity Translucent
Specific gravity 4.65
Density 4.42 g/cm3
Optical propertiesBiaxial (−)
Refractive index nα = 1.775 nβ = 1.900 nγ = 1.920
Birefringence δ = 0.145
Pleochroism Rich bluish greens
2V angle Measured: 41°
References [2] [3] [4]

Xocomecatlite is a rare tellurate mineral with formula: Cu3(TeO4)(OH)4. It is an orthorhombic mineral which occurs as aggregates or spherules of green needlelike crystals.

It was first described in 1975 for an occurrence in the Oriental mine near Moctezuma, Sonora, Mexico. It has also been reported from the Centennial Eureka mine in the Tintic District, Juab County, Utah and the Emerald mine of the Tombstone District, Cochise County, Arizona in the United States. The name is derived from xocomecatl, the Nahuatl word for "bunches of grapes", and alludes to the mineral's appearance as a set of green spherules. It occurs in the oxidized zone of gold-tellurium veins in altered rhyolite. It occurs associated with other rare tellurate minerals: parakhinite, dugganite, tlapallite, mcalpineite, leisingite, jensenite; the sulfate–phosphate minerals: hinsdalitesvanbergite; and the oxide goethite. [3] [4]

Related Research Articles

<span class="mw-page-title-main">Linarite</span> Copper lead sulfate hydroxide mineral

Linarite is a somewhat rare, crystalline mineral that is known among mineral collectors for its unusually intense, pure blue color. It is formed by the oxidation of galena and chalcopyrite and other copper sulfides. It is a combined copper lead sulfate hydroxide with formula PbCuSO4(OH)2. Linarite occurs as monoclinic prismatic to tabular crystals and irregular masses. It is easily confused with azurite, but does not react with dilute hydrochloric acid as azurite does. It has a Mohs hardness of 2.5 and a specific gravity of 5.3 – 5.5.

<span class="mw-page-title-main">Niedermayrite</span> Sulfate mineral

Niedermayrite is a rare hydrated copper cadmium sulfate hydroxide mineral with formula: Cu4Cd(SO4)2(OH)6·4H2O. It crystallizes in the monoclinic system and occurs as encrustations and well formed vitreous blue-green prismatic crystals. It has a specific gravity of 3.36.

Frankhawthorneite Cu2Te6+O4(OH)2 is a monoclinic copper tellurate mineral (space group P21/n) named after Prof. Frank Christopher Hawthorne (born 1946), University of Manitoba, Winnipeg, Canada. It was discovered at Centennial Eureka Mine, Tintic District, East Tintic Mountains, Juab County, Utah, in 1995. It has a leaf green color.

<span class="mw-page-title-main">Cesbronite</span>

Cesbronite is a copper-tellurium oxysalt mineral with the chemical formula Cu3Te6+O4(OH)4 (IMA 17-C). It is colored green and its crystals are orthorhombic dipyramidal. Cesbronite is rated 3 on the Mohs Scale. It is named after Fabien Cesbron (born 1938), a French mineralogist.

<span class="mw-page-title-main">Andersonite</span> Uranyl carbonate mineral

Andersonite, Na2Ca(UO2)(CO3)3·6H2O, or hydrated sodium calcium uranyl carbonate is a rare uranium carbonate mineral that was first described in 1948. Named after Charles Alfred Anderson (1902–1990) of the United States Geological Survey, who first described the mineral species, it is found in sandstone-hosted uranium deposits. It has a high vitreous to pearly luster and is fluorescent. Andersonite specimens will usually glow a bright lemon yellow (or green with blue hints depending on the deposit) in ultraviolet light. It is commonly found as translucent small rhombohedral crystals that have angles close to 90 degrees although its crystal system is nominally trigonal. Its Mohs hardness is 2.5, with an average specific gravity of 2.8.

<span class="mw-page-title-main">Kutnohorite</span> Mineral of calcium manganese carbonate

Kutnohorite is a rare calcium manganese carbonate mineral with magnesium and iron that is a member of the dolomite group. It forms a series with dolomite, and with ankerite. The end member formula is CaMn2+(CO3)2, but Mg2+ and Fe2+ commonly substitute for Mn2+, with the manganese content varying from 38% to 84%, so the formula Ca(Mn2+,Mg,Fe2+)(CO3)2 better represents the species. It was named by Professor Bukowsky in 1901 after the type locality of Kutná Hora, Bohemia, in the Czech Republic. It was originally spelt "kutnahorite" but "kutnohorite" is the current IMA-approved spelling.

<span class="mw-page-title-main">Vulcanite</span>

Vulcanite is a rare copper telluride mineral. The mineral has a metallic luster, and has a green or bronze-yellow tint. It has a hardness between 1 and 2 on the Mohs scale. Its crystal structure is orthorhombic.

<span class="mw-page-title-main">Coloradoite</span> Rare telluride ore

Coloradoite, also known as mercury telluride (HgTe), is a rare telluride ore associated with metallic deposit. Gold usually occurs within tellurides, such as coloradoite, as a high-finess native metal.

<span class="mw-page-title-main">Gilalite</span>

Gilalite is a copper silicate mineral with chemical composition of Cu5Si6O17·7(H2O).

Sewardite is a rare arsenate mineral with formula of CaFe3+2(AsO4)2(OH)2. Sewardite was discovered in 1982 and named for the mineralogist, Terry M. Seward (born 1940), a professor of geochemistry in Zürich, Switzerland.

<span class="mw-page-title-main">Utahite</span>

Utahite is an extremely rare secondary copper zinc tellurate mineral found as a product of oxidation. Its chemical formula is Cu5Zn3(Te6+O4)4(OH)8·7H2O.

<span class="mw-page-title-main">Perhamite</span>

Perhamite is a phosphate mineral with the formula Ca3Al7(SiO4)3(PO4)4(OH)3·16.5(H2O). It occurs in rare isolated masses in amblygonite-rich pegmatite deposits throughout the world. It was discovered in platy sheed form of 1mm hexagonal crystals. It was first described in 1977 by P.J. Dunn and D.E. Appleman from pegmatite collected from Bell Pit, Newry, Maine. Other specimens have been found in Kapunda, South Australia, in Silver Coin mine near Humboldt County, Nevada and various locations throughout Europe.

<span class="mw-page-title-main">Bultfonteinite</span>

Bultfonteinite, originally dutoitspanite, is a pink to colorless mineral with chemical formula Ca2SiO2(OH,F)4. It was discovered in 1903 or 1904 in the Bultfontein mine in South Africa, for which the mineral is named, and described in 1932.

Daubréeite is a rare bismuth oxohalide mineral with formula BiO(OH,Cl). It is a creamy-white to yellow-brown, soft, earthy clay–like mineral which crystallizes in the tetragonal crystal system. It is a member of the matlockite group.

<span class="mw-page-title-main">Rodalquilarite</span>

Rodalquilarite is a rare iron tellurite chloride mineral with formula H3Fe3+2(Te4+O3)4Cl or Fe2(TeO2OH)3(TeO3)Cl. Rodalquilarite crystallizes in the triclinic system and typically occurs as stout green prisms and encrustations.

<span class="mw-page-title-main">Tlapallite</span>

Tlapallite is a rare and complex tellurate mineral with the chemical formula (Ca,Pb)3CaCu6[Te4+3Te6+O12]2(Te4+O3)2(SO4)2·3H2O. It has a Moh's hardness of 3 and it is green in colour. It was named after the Nahua word "Tlalpalli", which translates to paint, referring to the paint-like habit of the mineral. Its formula and crystal structure were redefined in 2019, showing it contained a mixed-valence phyllotellurate layer [Te4+3Te6+O12]12−.

<span class="mw-page-title-main">Tlalocite</span>

Tlalocite is a rare and complex tellurate mineral with the formula Cu10Zn6(TeO4)2(TeO3)(OH)25Cl · 27 H2O. It has a Mohs hardness of 1, and a cyan color. It was named after Tlaloc, the Aztec god of rain, in allusion to the high amount of water contained within the crystal structure. It is not to be confused with quetzalcoatlite, which often looks similar in color and habit.

<span class="mw-page-title-main">Teineite</span>

Teineite is a tellurite mineral with the formula Cu(TeO3). 2 H2O. It has a Mohs hardness of 2.5 and it comes in many different shades of blue, ranging from cerulean blue to bluish-gray. The mineral millsite has the same chemical composition, but crystallizes in the monoclinic system, while teineite crystallizes in the orthorhombic system.

<span class="mw-page-title-main">Khinite</span>

Khinite is a rare tellurate mineral with the formula Pb2+Cu2+3TeO6(OH)2. It crystallizes in the orthorhombic system and has a bottle-green colour. It is often found as dipyramidal, curved or corroded crystals no more than 0.15 mm in size. The tetragonal dimorph of khinite is called parakhinite.

<span class="mw-page-title-main">Malhmoodite</span>

Malhmoodite is a phosphate mineral first discovered at a mine called Union Carbide in Wilson Springs, Arkansas, United States. This mine is 10 km west of Magnet Cove, an alkaline igneous complex, and Union Carbide is in a contact region of alkalic igneous rocks and surrounding sedimentary rocks. The mineral has been approved by the Commission on New Minerals and Mineral Names, IMA, to be named for the late Bertha K. Malhmood, the Administrative Assistant of the Branch of Analytical Laboratories, U.S. Geological Survey.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Xocomecatlite Mineral Data on Webmineral
  3. 1 2 Handbook of Mineralogy
  4. 1 2 Mindat.org