Yoda1

Last updated
Yoda1
Yoda1 structure.png
Names
Preferred IUPAC name
2-(5-{[(2,6-Dichlorophenyl)methyl]sulfanyl}-1,3,4-thiadiazol-2-yl)pyrazine
Identifiers
3D model (JSmol)
ChEBI
PubChem CID
UNII
  • ClC1=C(CSC2=NN=C(C3=NC=CN=C3)S2)C(Cl)=CC=C1
Properties
C13H8Cl2N4S2
Molar mass 355.27 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Yoda1 is a chemical compound which is the first agonist developed for the mechanosensitive ion channel PIEZO1. This protein is involved in regulation of blood pressure and red blood cell volume, and Yoda1 is used in scientific research in these areas. [1] [2] [3] [4] [5]

See also

Related Research Articles

In physiology, thermoception or thermoreception is the sensation and perception of temperature, or more accurately, temperature differences inferred from heat flux. It deals with a series of events and processes required for an organism to receive a temperature stimulus, convert it to a molecular signal, and recognize and characterize the signal in order to trigger an appropriate defense response.

<span class="mw-page-title-main">Verapamil</span> Calcium channel blocker medication

Verapamil, sold under various trade names, is a calcium channel blocker medication used for the treatment of high blood pressure, angina, and supraventricular tachycardia. It may also be used for the prevention of migraines and cluster headaches. It is given by mouth or by injection into a vein.

<span class="mw-page-title-main">Amlodipine</span> Medication against high blood pressure

Amlodipine, sold under the brand name Norvasc among others, is a calcium channel blocker medication used to treat high blood pressure, coronary artery disease (CAD) and variant angina. It is taken orally.

Transient receptor potential channels are a group of ion channels located mostly on the plasma membrane of numerous animal cell types. Most of these are grouped into two broad groups: Group 1 includes TRPC, TRPV, TRPVL, TRPM, TRPS, TRPN, and TRPA. Group 2 consists of TRPP and TRPML. Other less-well categorized TRP channels exist, including yeast channels and a number of Group 1 and Group 2 channels present in non-animals. Many of these channels mediate a variety of sensations such as pain, temperature, different kinds of taste, pressure, and vision. In the body, some TRP channels are thought to behave like microscopic thermometers and used in animals to sense hot or cold. Some TRP channels are activated by molecules found in spices like garlic (allicin), chili pepper (capsaicin), wasabi ; others are activated by menthol, camphor, peppermint, and cooling agents; yet others are activated by molecules found in cannabis or stevia. Some act as sensors of osmotic pressure, volume, stretch, and vibration. Most of the channels are activated or inhibited by signaling lipids and contribute to a family of lipid-gated ion channels.

<span class="mw-page-title-main">Interstitium</span> Anatomical term

The interstitium is a contiguous fluid-filled space existing between a structural barrier, such as a cell membrane or the skin, and internal structures, such as organs, including muscles and the circulatory system. The fluid in this space is called interstitial fluid, comprises water and solutes, and drains into the lymph system. The interstitial compartment is composed of connective and supporting tissues within the body – called the extracellular matrix – that are situated outside the blood and lymphatic vessels and the parenchyma of organs. The role of the interstitium in solute concentration, protein transport and hydrostatic pressure impacts human pathology and physiological responses such as edema, inflammation and shock.

<span class="mw-page-title-main">Hereditary stomatocytosis</span> Medical condition

Hereditary stomatocytosis describes a number of inherited, mostly autosomal dominant human conditions which affect the red blood cell and create the appearance of a slit-like area of central pallor (stomatocyte) among erythrocytes on peripheral blood smear. The erythrocytes' cell membranes may abnormally 'leak' sodium and/or potassium ions, causing abnormalities in cell volume. Hereditary stomatocytosis should be distinguished from acquired causes of stomatocytosis, including dilantin toxicity and alcoholism, as well as artifact from the process of preparing peripheral blood smears.

The term human blood group systems is defined by the International Society of Blood Transfusion (ISBT) as systems in the human species where cell-surface antigens—in particular, those on blood cells—are "controlled at a single gene locus or by two or more very closely linked homologous genes with little or no observable recombination between them", and include the common ABO and Rh (Rhesus) antigen systems, as well as many others; 44 human systems are identified as of December 2022.

<span class="mw-page-title-main">Epithelial sodium channel</span> Group of membrane proteins

The epithelial sodium channel(ENaC), (also known as amiloride-sensitive sodium channel) is a membrane-bound ion channel that is selectively permeable to sodium ions (Na+). It is assembled as a heterotrimer composed of three homologous subunits α or δ, β, and γ, These subunits are encoded by four genes: SCNN1A, SCNN1B, SCNN1G, and SCNN1D. The ENaC is involved primarily in the reabsorption of sodium ions at the collecting ducts of the kidney's nephrons. In addition to being implicated in diseases where fluid balance across epithelial membranes is perturbed, including pulmonary edema, cystic fibrosis, COPD and COVID-19, proteolyzed forms of ENaC function as the human salt taste receptor.

<span class="mw-page-title-main">TRPM3</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily M member 3 is a protein that in humans is encoded by the TRPM3 gene.

<span class="mw-page-title-main">LRRC8A</span> Protein-coding gene in the species Homo sapiens

Leucine-rich repeat-containing protein 8A is a protein that in humans is encoded by the LRRC8A gene. Researchers have found out that this protein, along with the other LRRC8 proteins LRRC8B, LRRC8C, LRRC8D, and LRRC8E, is a subunit of the heteromer protein volume-regulated anion channel (VRAC). VRACs are crucial to the regulation of cell size by transporting chloride ions and various organic osmolytes, such as taurine or glutamate, across the plasma membrane, and that is not the only function these channels have been linked to.

Mechanosensitive channels (MSCs), mechanosensitive ion channels or stretch-gated ion channels are membrane proteins capable of responding to mechanical stress over a wide dynamic range of external mechanical stimuli. They are present in the membranes of organisms from the three domains of life: bacteria, archaea, and eukarya. They are the sensors for a number of systems including the senses of touch, hearing and balance, as well as participating in cardiovascular regulation and osmotic homeostasis (e.g. thirst). The channels vary in selectivity for the permeating ions from nonselective between anions and cations in bacteria, to cation selective allowing passage Ca2+, K+ and Na+ in eukaryotes, and highly selective K+ channels in bacteria and eukaryotes.

<span class="mw-page-title-main">David Julius</span> American physiologist and Nobel laureate 2021

David Jay Julius is an American physiologist and Nobel Prize laureate known for his work on molecular mechanisms of pain sensation and heat, including the characterization of the TRPV1 and TRPM8 receptors that detect capsaicin, menthol, and temperature. He is a professor at the University of California, San Francisco.

<span class="mw-page-title-main">PIEZO1</span> Protein-coding gene in the species Homo sapiens

PIEZO1 is a mechanosensitive ion channel protein that in humans is encoded by the gene PIEZO1. PIEZO1 and its close homolog PIEZO2 were cloned in 2010, using an siRNA-based screen for mechanosensitive ion channels.

<span class="mw-page-title-main">PIEZO2</span>

Piezo-type mechanosensitive ion channel component 2 is a protein that in humans is encoded by the PIEZO2 gene. It has a homotrimeric structure, with three blades curving into a nano-dome, with a diameter of 28 nanometers.

<span class="mw-page-title-main">Wasabi receptor toxin</span>

Wasabi receptor toxin (WaTx) is the active component of the venom of the Australian black rock scorpion Urodacus manicatus. WaTx targets TRPA1, also known as the wasabi receptor or irritant receptor. WaTx is a cell-penetrating toxin that stabilizes the TRPA1 channel open state while reducing its Ca2+-permeability, thereby eliciting pain and pain hypersensitivity without the neurogenic inflammation that typically occurs in other animal toxins.

The Er blood group system consists of five human red blood cell surface antigens, Era, Erb, Er3, Er4 and Er5. The incidences of Era and Er3 are each greater than 99% of the human population, while the incidence of Erb is less than 0.01%. Er4 and Er5 are found at a high frequency in the general population.

<span class="mw-page-title-main">Ardem Patapoutian</span> Molecular biologist, neuroscientist, and Nobel laureate 2021

Ardem Patapoutian is a Lebanese-American molecular biologist, neuroscientist, and Nobel Prize laureate of Armenian descent. He is known for his work in characterizing the PIEZO1, PIEZO2, and TRPM8 receptors that detect pressure, menthol, and temperature. Patapoutian is a neuroscience professor and Howard Hughes Medical Institute investigator at Scripps Research in La Jolla, California. In 2021, he won the Nobel Prize in Physiology or Medicine jointly with David Julius.

The 2021 Nobel Prize in Physiology or Medicine was jointly awarded to the American physiologist David Julius and Armenian-American neuroscientist Ardem Patapoutian "for the discovery of receptors for temperature and touch." During the award ceremony on December 10, 2021, Nobel Assembly at Karolinska Institutet member Patrik Ernfors expressed:

"The 2021 Nobel Prize laureates have explained fundamental mechanisms underpinning how we sense the world within and around us. Our temperature and touch sensors are used all the time in every day of our lives. They continuously keep us updated about our environment, and without them even the simplest of our daily tasks would be impossible to perform."

<span class="mw-page-title-main">GsMTx-4</span> Grammostola mechanotoxin 4

Grammostola mechanotoxin #4, also known as M-theraphotoxin-Gr1a (M-TRTX-Gr1a), is a neurotoxin isolated from the venom of the spider Chilean rose tarantula Grammostola spatulate. This amphiphilic peptide, which consists of 35 amino acids, belongs to the inhibitory cysteine knot (ICK) peptide family. It reduces mechanical sensation by inhibiting mechanosensitive channels (MSCs).

<span class="mw-page-title-main">Jedi1</span> Chemical compound

Jedi1 is a chemical compound which acts as an agonist for the mechanosensitive ion channel PIEZO1, and is used in research into the function of touch perception.

References

  1. Syeda, Ruhma; Xu, Jie; Dubin, Adrienne E.; Coste, Bertrand; Mathur, Jayanti; Huynh, Truc; Matzen, Jason; Lao, Jianmin; Tully, David C.; Engels, Ingo H.; Petrassi, H. Michael; Schumacher, Andrew M.; Montal, Mauricio; Bandell, Michael; Patapoutian, Ardem (2015). "Chemical activation of the mechanotransduction channel Piezo1". eLife. 4: e07369. doi: 10.7554/eLife.07369 . PMC   4456433 . PMID   26001275. S2CID   2652667 .
  2. Cahalan, Stuart M.; Lukacs, Viktor; Ranade, Sanjeev S.; Chien, Shu; Bandell, Michael; Patapoutian, Ardem (2015). "Piezo1 links mechanical forces to red blood cell volume". eLife. 4: e07370. doi: 10.7554/eLife.07370 . PMC   4456639 . PMID   26001274. S2CID   15018525 .
  3. Wang, ShengPeng; Chennupati, Ramesh; Kaur, Harmandeep; Iring, Andras; Wettschureck, Nina; Offermanns, Stefan (2016). "Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release". Journal of Clinical Investigation. 126 (12): 4527–4536. doi: 10.1172/JCI87343 . PMC   5127677 . PMID   27797339. S2CID   38263363 .
  4. Rapetti-Mauss, Raphaël; Picard, Véronique; Guitton, Corinne; Ghazal, Khaldoun; Proulle, Valérie; Badens, Catherine; Soriani, Olivier; Garçon, Loïc; Guizouarn, Hélène (2017). "Red blood cell Gardos channel (KCNN4): The essential determinant of erythrocyte dehydration in hereditary xerocytosis". Haematologica. 102 (10): e415–e418. doi: 10.3324/haematol.2017.171389 . PMC   5622875 . PMID   28619848. S2CID   31756119 .
  5. Gnanasambandam, R.; Gottlieb, P. A.; Sachs, F. (2017). "The Kinetics and the Permeation Properties of Piezo Channels". In Gottlieb, Philip A. (ed.). Piezo Channels. Current Topics in Membranes. Vol. 79. Academic Press. pp. 275–307. doi:10.1016/bs.ctm.2016.11.004. ISBN   978-0-12-809389-4. PMID   28728821. S2CID   3743286.