ZTTK syndrome

Last updated
ZTTK syndrome
Other namesZhu-Tokita-Takenouchi-Kim syndrome

ZTTK syndrome (Zhu-Tokita-Takenouchi-Kim syndrome) is a rare multisystem disease caused in humans by a genetic mutation of the SON gene. Common symptoms include developmental delay and often light to severe intellectual disability. [1] [2]

Contents

Characteristic abnormalities include cerebral cortex malformations, vision difficulties, musculoskeletal abnormalities and congenital defects. [1] Individuals with a mutation in the SON gene may not all display these features. However, SON loss of function (LoF) variants appear to cause a clinically distinguished phenotype. [1]

Signs and Symptoms

The key signs and symptoms associated with ZTTK Syndrome patients include ocular, facial and systemic features.[ citation needed ]

Ocular Features

Distinctive ocular features of the ZTTK syndrome are deep-set eyes, down-slanting palpebral fissures and horizontal eyebrows. [1] Children with ZTTK syndrome may present with vision problems including optic atrophy and cerebral visual impairment, resulting in poor visual responses. [1] Strabismus; misalignment or crossing of the eyes when viewing an object, direct hypermetropia; farsightedness, and nystagmus; eyes making repetitive and uncontrolled movements, are frequently present. [3]

Facial Features

Individuals with ZTTK syndrome have distinctive minor to moderate facial dysmorphisms. Distinct facial features include facial asymmetry, low-set ears, midface retraction, frontal bossing, [4] a depressed and or broad nasal bridge and a smooth or short philtrum. [1]

Systemic Features

Multi-system abnormalities are common in ZTTK syndrome. The majority of individuals diagnosed with ZTTK syndrome display congenital malformations such as urogenital and malformations, heart defects, and a high or cleft palate. [1]

Congenital defects such as a thinned atrial septum, ventricular septal defects, patent ductus arteriosus, dysplastic kidney and agenesis of the lung and gallbladder have also been noted. [4] Whole body musculoskeletal abnormalities have been observed in ZTTK syndrome patients, including hemivertebrae, scoliosis or kyphosis, contractures, joint laxity, [4] joint hypermobility and hypotonia. [1] During the neonatal period, persistent feeding difficulties is associated with growth failure and a short stature in most individuals with ZTTK syndrome. [4]

Central Nervous System

Developmental delay is common in ZTTK syndrome patients, and appears to progressively increase the severity of intellectual disability with age. [1] The development of gross and fine motor skills, as well as fluent and receptive language skills are shown to be delayed in developmental age. Macrocephaly and brain white matter abnormalities have also been observed. [5] Seizures often develop between the ages of 1 and 6 years old. [3]

Physiological

Mutations of the SON gene can affect metabolism and mitochondrial function in newborns with ZTTK syndrome. Metabolic screening confirmed mitochondrial dysfunction and O-glycosylation defects in individuals with ZTTK syndrome. [1] Decreased levels of immunoglobulin A and or immunoglobulin G identified in ZTTK syndrome patients resulted in coagulation abnormalities. [2]

Genetics

ZTTK syndrome is caused by heterozygous mutations in the SON gene. [5] As an autosomal dominant disease, children with parents carrying a SON mutation have a 50% risk of inheriting the mutation. However, the majority of affected individuals have de novo mutations in the SON gene. [3]

Allelic Variants of SON Gene

Many individuals with ZTTK syndrome have identified heterozygosity for a de novo 4-base pair deletion [5] [6] de novo mutation in exon 3 in the SON gene [1] and de novo 2-base point insertion in exon, [1] resulting in haploinsufficiency or a frameshift and premature termination in the arginine/serine (RS) domain. Peripheral blood cells from the sampled patients confirmed decreased levels of the mutant RNA transcript, consistent with haploinsufficiency. [1] Other mutations observed include a nonsense mutation, an in-frame deletion of amino acids and an entire gene deletion. [1] De novo heterozygous 1-base point duplication in exon 3 and 1-base point deletion in exon 4 of the SON gene resulted in a frameshift and premature termination. [4] Parental DNA has confirmed that de novo mutations are common in patients with ZTTK syndrome. [1] De novo LoF mutations and haploinsufficiency for the SON gene are shown to cause profound developmental malformations during embryonic development as seen in the phenotypic manifestations of the ZTTK syndrome. [4]

Structure of SON Gene

SON is a large protein consisting of 2426 amino acids and repeat sequences. [7] SON is located within the human chromosomal region 21q22.11 in nuclear speckles and consists of 12 exons. [8] Exon 3 of the SON gene is particularly large, accounting for 82% of the entire coding region. [1] The majority of SON variants found in ZTTK syndrome individuals are localised to exon 3. [4]

Mechanism

Role of the spliceosome-associated gene, SON in regulating RNA splicing through intron retention and exon skipping to maintain the pluripotency of human embryonic stem cells (hESCs) and cell-cycle progression Role of SON in ZTTK Syndrome.png
Role of the spliceosome-associated gene, SON in regulating RNA splicing through intron retention and exon skipping to maintain the pluripotency of human embryonic stem cells (hESCs) and cell-cycle progression

Role of SON in RNA Splicing

The SON gene encodes the SON protein, which is able to bind to DNA and RNA. [9] The SON protein is mainly localised to nuclear speckles and involved in a variety of cellular processes such as transcription, cell cycle regulation and subnuclear organisation of pre-messenger RNA (mRNA) splicing. [9] [10]

SON contains various domains such as the RS-rich domain, a G-patch domain and a double-stranded RNA-binding motif. [7] [11] The presence of these domains is necessary for SON to mediate constitutive and alternative splicing. [1] The RS-rich domain serves to localise SON in nuclear speckles with pre-mRNA processing factors. [9] The functional domains and specific localisation of SON in nuclear speckles has indicated its role in pre-mRNA splicing. [9]

SON also plays a key role in alternative splicing of exons. SON is required for genome stability by ensuring the efficiency of RNA splicing of weak constitutive and alternative splice sites. SON-dependent cell-cycle genes possess a weak 5’ or 3’ splice site and are dependent on SON to ensure efficient splicing and spliceosome recognition. [7]

Role of SON in Embryonic Development

The SON gene also plays a critical role during development. SON is expressed preferentially in undifferentiated stem cells. [9] Depletion of SON results in stem cell differentiation. [9]

Human embryonic stem cells (hESCs) are able to undergo lineage-specific differentiation into specific types of cells, known as pluripotency. [12] Pluripotent stem cells, such as hESCs can undergo gastrulation to give rise to the three germ layers. [9]

A significant level of SON expression in fetal tissue has suggested a regulatory role of SON in cellular proliferation and or differentiation during embryonic development by influencing the splicing of pluripotency maintenance genes. [13] The expression of transcription factors such as the SON factor and epigenetic modifiers regulate the pluripotency of hESCs by ensuring genes undergo RNA splicing to create a mature RNA transcript. [14]

The SON gene is required for RNA splicing of transcripts encoding the cell-cycle protein TUBG1 and genes maintaining hESC pluripotency; PRDM14, OCTA, E4F1 and MED24 in hESCs. [12] As OCT4 is involved in the core transcriptional circuitry in hESCs, misregulation of OCT4 induces cell differentiation. PRDM14 is a pluripotency regulator and MED24 is a mediator complex essential in the maintenance of pluripotency. [12] In wild-type ESCs, SON binding to the RNA transcripts of pluripotency regulating genes such as PRDM14 and OCT4 results in correct splicing and maintenance of pluripotency. [14]

Effects of SON Haploinsufficiency on RNA Splicing and Embryonic Development

The downregulation of SON can impact the regulation of mitotic regulator transcripts and cause defects in cell survival and the developmental process. [9] SON depletion causes decreased cell growth, [7] [15] [16] disarrayed microtubule processes and disordered spindle pole separation, causing mitotic arrest at metaphase and severe genome integrity impairment. [7] [15] [16] Mitotic cells without functional SON have increased double-stranded DNA breaks and micronuclei formation. [15] Consequently, genome stability and regulation of the cell cycle are compromised, contributing to the development of multi-organ defects in ZTTK syndrome patients. [7]

Aberrant splicing and de novo heterozygous LoF mutations in SON gene disrupts the process of gene expression and can result in SON haploinsufficiency. [17] [5] ZTTK syndrome individuals with SON haploinsufficiency display decreased mRNA expression and abnormal RNA splicing products of numerous genes which are necessary for neuronal cell migration, metabolic processes and neurodevelopment of the brain. [5]

RNA analyses from affected individuals with ZTTK syndrome confirmed the downregulation of genes essential for neuronal migration and cortex organisation (TUBG1, FLNA, PNKP, WDR62, PSMD3, HDAC6) and metabolism (PCK2, PFKL, IDH2, ACY1, and ADA). [1] Aberrant SON-mediated RNA splicing results from the accumulation of mis-spliced transcripts. [1] The mis-spliced RNA products are caused by significant intron retention (TUBG1, FLNA, PNKP, WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1) and exon skipping (HDAC6 and ADA). [1] In contrast, the parents of individuals with ZTTK syndrome display an absence of mis-spliced RNA products. [1]

SON depletion downregulates and causes aberrant splicing of the pluripotency factors, OCT4, PRDM14, MED24 and E4F1, inducing spontaneous differentiation of hESCs followed by widespread cell death. [12] [14] As SON acts as an intron splicing activator, the depletion of SON leads to increased intron retention and exon skipping in hESCs in regulatory genes of the cell cycle and hESC identity. [18] Mutations in the SON gene and or SON haploinsufficiency compromises SON-mediated RNA splicing and contributes to the complex developmental defects observed in individuals with ZTTK syndrome. [1] Erroneous SON function causes insufficient production of downstream targets, genome instability and disrupted cell cycle progression which are fundamental to the developmental defects and organ abnormalities in individuals with ZTTK syndrome. For example, FLNA haploinsufficiency observed in individuals with ZTTK syndrome is the main cause of a rare brain disorder, periventricular nodular heterotopia. De novo LoF mutations in TUBG1 can result in microcephaly and cortical malformations due to compromised SON-mediated RNA splicing in affected ZTTK syndrome individuals. [19]

The consequence of SON haploinsufficiency on embryonic development has also been studied in zebrafish animal models (Danio rerio). A range of developmental defects was observed, including bent, shortened or gnarled tails, massive body curvatures with deformed body axes, eye malformations and microcephaly. [1] Embryos that survived for a longer period of time have more severe phenotypes such as spinal malformations with brain oedema, imitating features observed in affected ZTTK syndrome individuals. [1]

Diagnosis

Brain Imaging

Early diagnosis of the ZTTK syndrome can be determined by brain imaging. Magnetic resonance imaging (MRI) of the brain of ZTTK syndrome patients have revealed significant abnormalities. [1]

Abnormal gyration patterns were seen, including polymicrogyria; many unusually small folds in the brain, simplified gyria; reduced number and shallow appearance of gyri, and periventricular nodular heterotopia; failure of neurons to migrate properly during early development of the fetal brain. [3] [20]

Ventriculomegaly can also be observed in MRI where the lateral ventricles become dilated in the foetus and can contribute to developmental delays in ZTTK syndrome individual. [3] Another common feature observed in ZTTK syndrome patients is Arnold-Chiari malformations which are structural defects in the cerebellum that manifest during fetal development and can lead to vision problems, scoliosis or kyphosis in ZTTK syndrome patients. [21]

Other pathological features seen on MRI scans of ZTTK syndrome individuals include arachnoid cysts, hypoplasia of the corpus callosum and cerebellar hemispheres and loss of periventricular white matter. [1]

Most individuals with ZTTK syndrome are identified early in childhood due to developmental delays and intellectual disabilities. [22] However, a formal diagnosis of intellectual disability can only be conducted by a performance of an IQ test score of below 70. [21]

Whole Exome Sequencing

Whole exome sequencing (WES) can be used as a non-biased tool in the diagnostic evaluation of individuals with suspected genetic disorders such as the ZTTK syndrome. [1] Using WES, individuals were identified with truncating variants of SON and overlapping clinical features.[ citation needed ]

ZTTK syndrome has been identified as a neurodevelopmental disorder associated with a de novo mutation in the SON gene using WES. The SON gene is known to be a major cause of severe intellectual disability and consequent developmental disorders. [22] The first de novo truncating variant in SON was recognised in a group of individuals with severe intellectual disabilities. [5] Sanger sequencing or the use of WES of parental samples confirmed the de novo status of the truncating and missense mutations of the SON gene in the sampled ZTTK syndrome individuals. [1] Variants identified included a premature stop variant in exon 3, frame-shift variants in exon 3 and a frameshift variant in exon 4. [1]

Treatment

There is currently no treatment for ZTTK syndrome. However, physical therapy and addressing the specific problems of multi organ disorders may be helpful. [3]

Research

As of 2024, a patient group is attempting to raise money to research a cure involving gene therapy or gene editing. [23]

Related Research Articles

<span class="mw-page-title-main">Polymicrogyria</span> Medical condition

Polymicrogyria (PMG) is a condition that affects the development of the human brain by multiple small gyri (microgyri) creating excessive folding of the brain leading to an abnormally thick cortex. This abnormality can affect either one region of the brain or multiple regions.

Timothy syndrome is a rare autosomal-dominant disorder characterized by physical malformations, as well as neurological and developmental defects, including heart QT-prolongation, heart arrhythmias, structural heart defects, syndactyly, and autism spectrum disorders. Timothy syndrome represents one clinical manifestation of a range of disorders associated with mutations in CACNA1C, the gene encoding the calcium channel Cav1.2 α subunit.

<span class="mw-page-title-main">Treacher Collins syndrome</span> Human genetic disorder

Treacher Collins syndrome (TCS) is a genetic disorder characterized by deformities of the ears, eyes, cheekbones, and chin. The degree to which a person is affected, however, may vary from mild to severe. Complications may include breathing problems, problems seeing, cleft palate, and hearing loss. Those affected generally have normal intelligence.

<span class="mw-page-title-main">Haploinsufficiency</span> Concept in genetics

Haploinsufficiency in genetics describes a model of dominant gene action in diploid organisms, in which a single copy of the wild-type allele at a locus in heterozygous combination with a variant allele is insufficient to produce the wild-type phenotype. Haploinsufficiency may arise from a de novo or inherited loss-of-function mutation in the variant allele, such that it yields little or no gene product. Although the other, standard allele still produces the standard amount of product, the total product is insufficient to produce the standard phenotype. This heterozygous genotype may result in a non- or sub-standard, deleterious, and (or) disease phenotype. Haploinsufficiency is the standard explanation for dominant deleterious alleles.

<span class="mw-page-title-main">Fraser syndrome</span> Recessive genetic disorder involving eye and genital abnormalities

Fraser syndrome is an autosomal recessive congenital disorder, identified by several developmental anomalies. Fraser syndrome is named for the geneticist George R. Fraser, who first described the syndrome in 1962.

<span class="mw-page-title-main">22q13 deletion syndrome</span> Rare genetic syndrome

22q13 deletion syndrome, known as Phelan–McDermid syndrome (PMS), is a genetic disorder caused by deletions or rearrangements on the q terminal end of chromosome 22. Any abnormal genetic variation in the q13 region that presents with significant manifestations (phenotype) typical of a terminal deletion may be diagnosed as 22q13 deletion syndrome. There is disagreement among researchers as to the exact definition of 22q13 deletion syndrome. The Developmental Synaptopathies Consortium defines PMS as being caused by SHANK3 mutations, a definition that appears to exclude terminal deletions. The requirement to include SHANK3 in the definition is supported by many but not by those who first described 22q13 deletion syndrome.

<span class="mw-page-title-main">Neurofibromin 1</span> Mammalian protein found in humans

Neurofibromin 1 (NF1) is a gene in humans that is located on chromosome 17. NF1 codes for neurofibromin, a GTPase-activating protein that negatively regulates RAS/MAPK pathway activity by accelerating the hydrolysis of Ras-bound GTP. NF1 has a high mutation rate and mutations in NF1 can alter cellular growth control, and neural development, resulting in neurofibromatosis type 1. Symptoms of NF1 include disfiguring cutaneous neurofibromas (CNF), café au lait pigment spots, plexiform neurofibromas (PN), skeletal defects, optic nerve gliomas, life-threatening malignant peripheral nerve sheath tumors (MPNST), pheochromocytoma, attention deficits, learning deficits and other cognitive disabilities.

<span class="mw-page-title-main">Peters-plus syndrome</span> Medical condition

Peters-plus syndrome or Krause–Kivlin syndrome is a hereditary syndrome defined by Peters' anomaly, dwarfism and intellectual disability.

<span class="mw-page-title-main">Johanson–Blizzard syndrome</span> Medical condition

Johanson–Blizzard syndrome (JBS) is a rare, sometimes fatal autosomal recessive multisystem congenital disorder featuring abnormal development of the pancreas, nose and scalp, with intellectual disability, hearing loss and growth failure. It is sometimes described as a form of ectodermal dysplasia.

<span class="mw-page-title-main">Lujan–Fryns syndrome</span> Medical condition

Lujan–Fryns syndrome (LFS) is an X-linked genetic disorder that causes mild to moderate intellectual disability and features described as Marfanoid habitus, referring to a group of physical characteristics similar to those found in Marfan syndrome. These features include a tall, thin stature and long, slender limbs. LFS is also associated with psychopathology and behavioral abnormalities, and it exhibits a number of malformations affecting the brain and heart. The disorder is inherited in an X-linked dominant manner, and is attributed to a missense mutation in the MED12 gene. There is currently no treatment or therapy for the underlying MED12 malfunction, and the exact cause of the disorder remains unclear.

<span class="mw-page-title-main">9q34.3 deletion syndrome</span> Medical condition

9q34 deletion syndrome is a rare genetic disorder. Terminal deletions of chromosome 9q34 have been associated with childhood hypotonia, a distinctive facial appearance and developmental disability. The facial features typically described include arched eyebrows, small head circumference, midface hypoplasia, prominent jaw and a pouting lower lip. Individuals with this disease may often have speech impediments, such as speech delays. Other characteristics of this disease include: epilepsy, congenital and urogenital defects, microcephaly, corpulence, and psychiatric disorders. From analysis of chromosomal breakpoints, as well as gene sequencing in suggestive cases, Kleefstra and colleagues identified EHMT1 as the causative gene. This gene is responsible for producing the protein histone methyltransferase which functions to alter histones. Ultimately, histone methyltransferases are important in deactivating certain genes, needed for proper growth and development. Moreover, a frameshift, missense, or nonsense error in the coding sequence of EHMT1 can result in this condition in an individual.

<span class="mw-page-title-main">Kohlschütter–Tönz syndrome</span> Medical condition

Kohlschütter–Tönz syndrome (KTS), also called amelo-cerebro-hypohidrotic syndrome, is a rare inherited syndrome characterized by epilepsy, psychomotor delay or regression, intellectual disability, and yellow teeth caused by amelogenesis imperfecta. It is a type A ectodermal dysplasia.

Progeroid syndromes (PS) are a group of rare genetic disorders that mimic physiological aging, making affected individuals appear to be older than they are. The term progeroid syndrome does not necessarily imply progeria, which is a specific type of progeroid syndrome.

<span class="mw-page-title-main">13q deletion syndrome</span> Medical condition

13q deletion syndrome is a rare genetic disease caused by the deletion of some or all of the large arm of human chromosome 13. Depending upon the size and location of the deletion on chromosome 13, the physical and mental manifestations will vary. It has the potential to cause intellectual disability and congenital malformations that affect a variety of organ systems. Because of the rarity of the disease in addition to the variations in the disease, the specific genes that cause this disease are unknown. This disease is also known as:

<span class="mw-page-title-main">Shapiro–Senapathy algorithm</span>

The ShapiroSenapathy algorithm (S&S) is an algorithm for predicting splice junctions in genes of animals and plants. This algorithm has been used to discover disease-causing splice site mutations and cryptic splice sites.

<span class="mw-page-title-main">Strømme syndrome</span> Rare genetic condition involving intestinal atresia, eye abnormalities and microcephaly

Strømme syndrome is a very rare autosomal recessive genetic condition characterised by intestinal atresia, eye abnormalities and microcephaly. The intestinal atresia is of the "apple-peel" type, in which the remaining intestine is twisted around its main artery. The front third of the eye is typically underdeveloped, and there is usually moderate developmental delay. Less common features include an atrial septal defect, increased muscle tone or skeletal abnormalities. Physical features may include short stature, large, low-set ears, a small jaw, a large mouth, epicanthic folds, or fine, sparse hair.

<span class="mw-page-title-main">Okamoto syndrome</span> Rare genetic condition involving urinary, heart, facial and neurological features

Okamoto syndrome (OS), also known as Au–Kline syndrome (AKS), is a very rare autosomal dominant genetic condition characterised by congenital hydronephrosis, low muscle tone, heart defects, intellectual disability and characteristic facial features. Those affected often have neurological and skeletal abnormalities, as well as frequent urinary tract infections. Language and walking are usually delayed. Facial features include prominent, downturned ears, an open, downturned mouth and drooping eyelids (ptosis).

<span class="mw-page-title-main">CDK13-related disorder</span> Rare genetic disorder involving heart, facial and neurological features

CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD), is a very rare autosomal dominant genetic condition characterised by congenital heart defects, intellectual disability and characteristic facial features. Those affected typically have motor and language delays, low muscle tone and gastrointestinal dysmotility. Facial features include a wide nasal bridge, widely-spaced eyes, prominent, low-set ears, a flat nose tip and a small mouth. Less common features include congenital spinal abnormalities, hearing loss or seizures.

Filippi syndrome, also known as Syndactyly Type I with Microcephaly and Mental Retardation, is a very rare autosomal recessive genetic disease. Only a very limited number of cases have been reported to date. Filippi Syndrome is associated with diverse symptoms of varying severity across affected individuals, for example malformation of digits, craniofacial abnormalities, intellectual disability, and growth retardation. The diagnosis of Filippi Syndrome can be done through clinical observation, radiography, and genetic testing. Filippi Syndrome cannot be cured directly as of 2022, hence the main focus of treatments is on tackling the symptoms observed on affected individuals. It was first reported in 1985.

<span class="mw-page-title-main">Severe intellectual disability-progressive spastic diplegia syndrome</span> Medical condition

Severe intellectual disability-progressive spastic diplegia syndrome is a rare novel genetic disorder characterized by severe intellectual disabilities, ataxia, craniofacial dysmorphisms, and muscle spasticity. It is a type of autosomal dominant syndromic intellectual disability.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Kim, Jung-Hyun; Shinde, Deepali N; Reijnders, Margot R.F; Hauser, Natalie S; Belmonte, Rebecca L; Wilson, Gregory R; Bosch, Daniëlle G.M; Bubulya, Paula A; Shashi, Vandana; Petrovski, Slavé; Stone, Joshua K; Park, Eun Young; Veltman, Joris A; Sinnema, Margje; Stumpel, Connie T.R.M; Draaisma, Jos M; Nicolai, Joost; Yntema, Helger G; Lindstrom, Kristin; De Vries, Bert B.A; Jewett, Tamison; Santoro, Stephanie L; Vogt, Julie; Bachman, Kristine K; Seeley, Andrea H; Krokosky, Alyson; Turner, Clesson; Rohena, Luis; Hempel, Maja; Kortüm, Fanny; et al. (2016). "De Novo Mutations in SON Disrupt RNA Splicing of Genes Essential for Brain Development and Metabolism, Causing an Intellectual-Disability Syndrome". The American Journal of Human Genetics. 99 (3): 711–719. doi:10.1016/j.ajhg.2016.06.029. PMC   5011044 . PMID   27545680.
  2. 1 2 "OMIM Entry # 617140 - ZTTK SYNDROME; ZTTKS". Online Mendelian Inheritance in Man . Johns Hopkins University . Retrieved 27 October 2017.
  3. 1 2 3 4 5 6 "ZTTK Syndrome".
  4. 1 2 3 4 5 6 7 Tokita, Mari J.; Braxton, Alicia A.; Shao, Yunru; Lewis, Andrea M.; Vincent, Marie; Küry, Sébastien; Besnard, Thomas; Isidor, Bertrand; Latypova, Xénia (September 2016). "De Novo Truncating Variants in SON Cause Intellectual Disability, Congenital Malformations, and Failure to Thrive". The American Journal of Human Genetics. 99 (3): 720–727. doi:10.1016/j.ajhg.2016.06.035. ISSN   0002-9297. PMC   5011061 . PMID   27545676.
  5. 1 2 3 4 5 6 Zhu, Xiaolin; Petrovski, Slavé; Xie, Pingxing; Ruzzo, Elizabeth K.; Lu, Yi-Fan; McSweeney, K. Melodi; Ben-Zeev, Bruria; Nissenkorn, Andreea; Anikster, Yair (2015-01-15). "Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios". Genetics in Medicine. 17 (10): 774–781. doi:10.1038/gim.2014.191. ISSN   1098-3600. PMC   4791490 . PMID   25590979.
  6. Takenouchi, Toshiki; Miura, Kiyokuni; Uehara, Tomoko; Mizuno, Seiji; Kosaki, Kenjiro (2016-06-03). "EstablishingSONin 21q22.11 as a cause a new syndromic form of intellectual disability: Possible contribution to Braddock-Carey syndrome phenotype". American Journal of Medical Genetics Part A. 170 (10): 2587–2590. doi: 10.1002/ajmg.a.37761 . ISSN   1552-4825. PMID   27256762.
  7. 1 2 3 4 5 6 Ahn, Eun-Young; DeKelver, Russell C.; Lo, Miao-Chia; Nguyen, Tuyet Ann; Matsuura, Shinobu; Boyapati, Anita; Pandit, Shatakshi; Fu, Xiang-Dong; Zhang, Dong-Er (April 2011). "SON Controls Cell-Cycle Progression by Coordinated Regulation of RNA Splicing". Molecular Cell. 42 (2): 185–198. doi:10.1016/j.molcel.2011.03.014. ISSN   1097-2765. PMC   3137374 . PMID   21504830.
  8. Khan, I. M.; Fisher, R. A.; Johnson, K. J.; Bailey, M. E. S.; Siciliano, M. J.; Kessling, A. M.; Farrer, M.; Carritt, B.; Kamalati, T. (January 1994). "The SON gene encodes a conserved DNA binding protein mapping to human chromosome 21". Annals of Human Genetics. 58 (1): 25–34. doi:10.1111/j.1469-1809.1994.tb00723.x. ISSN   0003-4800. PMID   8031013. S2CID   31519119.
  9. 1 2 3 4 5 6 7 8 Lu, Xinyi; Ng, Huck-Hui; Bubulya, Paula A. (2014-04-30). "The role of SON in splicing, development, and disease". Wiley Interdisciplinary Reviews: RNA. 5 (5): 637–646. doi:10.1002/wrna.1235. ISSN   1757-7004. PMC   4138235 . PMID   24789761.
  10. Spector, D. L.; Lamond, A. I. (2010-10-06). "Nuclear Speckles". Cold Spring Harbor Perspectives in Biology. 3 (2): a000646. doi:10.1101/cshperspect.a000646. ISSN   1943-0264. PMC   3039535 . PMID   20926517.
  11. Hickey, Christopher J.; Kim, Jung-Hyun; Ahn, Eun-Young Erin (2013-12-13). "New Discoveries of Old SON: A Link Between RNA Splicing and Cancer". Journal of Cellular Biochemistry. 115 (2): 224–231. doi:10.1002/jcb.24672. ISSN   0730-2312. PMID   24030980. S2CID   23130360.
  12. 1 2 3 4 Lu, Xinyi; Göke, Jonathan; Sachs, Friedrich; Jacques, Pierre-Étienne; Liang, Hongqing; Feng, Bo; Bourque, Guillaume; Bubulya, Paula A.; Ng, Huck-Hui (2013-09-08). "SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells". Nature Cell Biology. 15 (10): 1141–1152. doi:10.1038/ncb2839. ISSN   1465-7392. PMC   4097007 . PMID   24013217.
  13. Cheng, Suzanne; Lutfalla, Georges; Uze, Gilles; Chumakov, Ilya M.; Gardiner, Katheleen (1993). "GART, SON, IFNAR, and CRF2-4 genes cluster on human Chromosome 21 and mouse Chromosome 16". Mammalian Genome. 4 (6): 338–342. doi:10.1007/bf00357094. ISSN   0938-8990. PMID   8318737. S2CID   19770065.
  14. 1 2 3 Livyatan, Ilana; Meshorer, Eran (October 2013). "SON sheds light on RNA splicing and pluripotency". Nature Cell Biology. 15 (10): 1139–1140. doi:10.1038/ncb2851. ISSN   1465-7392. PMID   24084863. S2CID   12137904.
  15. 1 2 3 Huen, Michael S.Y.; Sy, Shirley M.H.; Leung, Ka Man; Ching, Yick-Pang; Tipoe, George L.; Man, Cornelia; Dong, Shuo; Chen, Junjie (July 2010). "SON is a spliceosome-associated factor required for mitotic progression". Cell Cycle. 9 (13): 2679–2685. doi:10.4161/cc.9.13.12151. ISSN   1538-4101. PMC   3040851 . PMID   20581448.
  16. 1 2 Sharma, Alok; Takata, Hideaki; Shibahara, Kei-ichi; Bubulya, Athanasios; Bubulya, Paula A. (2010-02-15). "Son Is Essential for Nuclear Speckle Organization and Cell Cycle Progression". Molecular Biology of the Cell. 21 (4): 650–663. doi:10.1091/mbc.e09-02-0126. ISSN   1059-1524. PMC   2820428 . PMID   20053686.
  17. Cooper, Thomas A.; Wan, Lili; Dreyfuss, Gideon (February 2009). "RNA and Disease". Cell. 136 (4): 777–793. doi:10.1016/j.cell.2009.02.011. ISSN   0092-8674. PMC   2866189 . PMID   19239895.
  18. Juan-Mateu, Jonàs; Villate, Olatz; Eizirik, Décio L (May 2016). "MECHANISMS IN ENDOCRINOLOGY: Alternative splicing: the new frontier in diabetes research". European Journal of Endocrinology. 174 (5): R225–R238. doi: 10.1530/eje-15-0916 . ISSN   0804-4643. PMC   5331159 . PMID   26628584.
  19. Poirier, Karine; Lebrun, Nicolas; Broix, Loic; Tian, Guoling; Saillour, Yoann; Boscheron, Cécile; Parrini, Elena; Valence, Stephanie; Pierre, Benjamin Saint (2013-04-21). "Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of cortical development and microcephaly". Nature Genetics. 45 (6): 639–647. doi:10.1038/ng.2613. ISSN   1061-4036. PMC   3826256 . PMID   23603762.
  20. "Periventricular heterotopia | Genetic and Rare Diseases Information Center (GARD) – an NCATS Program". rarediseases.info.nih.gov. Retrieved 2019-04-28.
  21. 1 2 "Arnold Chiari Malformation: Symptoms, Types, and Treatment". WebMD. Retrieved 2019-04-28.
  22. 1 2 Vissers, Lisenka E. L. M.; Gilissen, Christian; Veltman, Joris A. (2015-10-27). "Genetic studies in intellectual disability and related disorders". Nature Reviews Genetics. 17 (1): 9–18. doi:10.1038/nrg3999. ISSN   1471-0056. PMID   26503795. S2CID   16723395.
  23. Jonathan Saltzman (February 28, 2024). "A Somerville boy has one of the world's rarest diseases. His parents are determined to find a cure". The Boston Globe .