Zellerite

Last updated
Zellerite
Zellerite 1.jpg
General
Category Mineral
Formula
(repeating unit)
Ca(UO2)(CO3)2 · 5H2O
Strunz classification 5.EC.10
Dana classification15.3.1.1
Crystal system Orthorhombic
Crystal class H-M symbol: 2/m 2/m 2/m
or mm2
Space group Pmmm or Pmn21
Unit cell 1,064.81
Identification
ColorWhite yellow, light lemon-yellow, lemon
Crystal habit Acicular
Cleavage One
Mohs scale hardness2
Luster Dull
Streak White
Diaphaneity Transparent, translucent
Specific gravity 3.25
Density 3.25
Optical propertiesBiaxial (+)
Refractive index nα = 1.536
nβ = 1.559
nγ = 1.697
Birefringence 0.161
2V angle Measured: 30°- 45°
Calculated: 48°
Dispersion Weak
r > v
Ultraviolet fluorescence SW and LW
Green patches
Other characteristics Radioactive.svg Radioactive

Zellerite is a uranium mineral, named after its discoverer, geologist Howard Davis Zeller. It has a type locality of the Lucky MC uranium mine in Wyoming, USA. It was approved by the IMA in 1965, but was first published a year after its approval. [1]

Properties

Zellerite is a dimorph of meyrowitzite. It is a uranyl carbonate. [1] It is an acicular mineral, and occurs in crystals that resemble the shape of needles. [2] It can occur as fine hairlike fibers as well. The size of each crystal is up to 2 mm, and it grows in roughly radial aggregates, veinlets, and incrustations. Elongation is possible. [3] It has pleochroic attributes, which is an optical phenomenon. Depending on which axis the specimen is being inspected, it can occur as it changes color. Upon being inspected on the x or y axis, the mineral can seem to be colorless, but on the z axis, it is seen in a pale yellow color. The mineral also shows luminescence. Under both a short wave and a long wave ultraviolet light, it fluoresces in green patches. [1] That is due to the mineral's very strong radioactive properties, more accurately due to the high uranium concentration in it. Furthermore, measured in GRapi units, zellerite has a very strong, 3,568,854.57 radioactivity. The concentration of the mineral per Gamma Ray American Petroleum Institute Units is 280.20. As for the mineral being highly radioactive, it is due to zellerite mainly consisting of oxidized uranium, where the concentration of uranium is 45.76%, while that of oxygen is 39.98%. Otherwise, it consists of calcium (7.70%), carbon (4.62%) and hydrogen (1.94%). [2] The fully hydrated form of the mineral is lemon yellow, but in transmitted light, it has a very pale yellow color. The dehydrated version of the mineral is called metazellerite. This rare mineral forms in the weathering zone as an oxidation product of uraninite-coffinite, in the presence of an oxidizing pyrite, where the pH is greater than 7 and the partial pressure of carbon dioxide is greater than the atmosphere's. It is associated with metazellerite, gypsum, uranophane, meta-autunite, schoepite, iron sulfides, limonite and opal. [3]

Related Research Articles

Uranium Chemical element, symbol U and atomic number 92

Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weakly radioactive because all isotopes of uranium are unstable; the half-lives of its naturally occurring isotopes range between 159,200 years and 4.5 billion years. The most common isotopes in natural uranium are uranium-238 and uranium-235. Uranium has the highest atomic weight of the primordially occurring elements. Its density is about 70% higher than that of lead, and slightly lower than that of gold or tungsten. It occurs naturally in low concentrations of a few parts per million in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite.

Speleothem Structure formed in a cave by the deposition of minerals from water

A speleothem is a geological formation by mineral deposits that accumulate over time in natural caves. Speleothems most commonly form in calcareous caves due to carbonate dissolution reactions. They can take a variety of forms, depending on their depositional history and environment. Their chemical composition, gradual growth, and preservation in caves make them useful paleoclimatic proxies.

Autunite

Autunite (hydrated calcium uranyl phosphate), with formula Ca(UO2)2(PO4)2·10–12H2O, is a yellow-greenish fluorescent phosphate mineral with a hardness of 2–2+12. Autunite crystallizes in the orthorhombic system and often occurs as tabular square crystals, commonly in small crusts or in fan-like masses. Due to the moderate uranium content of 48.27% it is radioactive and also used as uranium ore. Autunite fluoresces bright green to lime green under UV light. The mineral is also called calco-uranite, but this name is rarely used and effectively outdated.

Vivianite

Vivianite (Fe2+
Fe2+
2
(PO
4
)
2
·8H
2
O
) is a hydrated iron phosphate mineral found in a number of geological environments. Small amounts of manganese Mn2+, magnesium Mg and calcium Ca may substitute for iron Fe2+ in the structure. Pure vivianite is colorless, but the mineral oxidizes very easily, changing the color, and it is usually found as deep blue to deep bluish green prismatic to flattened crystals.
Vivianite crystals are often found inside fossil shells, such as those of bivalves and gastropods, or attached to fossil bone.

Torbernite

Torbernite, whose name derives from the Swedish chemist Torbern Bergman (1735–1784), is a radioactive, hydrated green copper uranyl phosphate mineral, found in granites and other uranium-bearing deposits as a secondary mineral. Torbernite is isostructural with the related uranium mineral, autunite.

Alstonite

Alstonite, also known as bromlite, is a low temperature hydrothermal mineral that is a rare double carbonate of calcium and barium with the formula BaCa(CO
3
)
2
, sometimes with some strontium. Barytocalcite and paralstonite have the same formula but different structures, so these three minerals are said to be trimorphous. Alstonite is triclinic but barytocalcite is monoclinic and paralstonite is trigonal. The species was named Bromlite by Thomas Thomson in 1837 after the Bromley-Hill mine, and alstonite by August Breithaupt of the Freiberg Mining Academy in 1841, after Alston, Cumbria, the base of operations of the mineral dealer from whom the first samples were obtained by Thomson in 1834. Both of these names have been in common use.

Leadhillite

Leadhillite is a lead sulfate carbonate hydroxide mineral, often associated with anglesite. It has the formula Pb4SO4(CO3)2(OH)2. Leadhillite crystallises in the monoclinic system, but develops pseudo-hexagonal forms due to crystal twinning. It forms transparent to translucent variably coloured crystals with an adamantine lustre. It is quite soft with a Mohs hardness of 2.5 and a relatively high specific gravity of 6.26 to 6.55.

Uranyl nitrate Chemical compound

Uranyl nitrate is a water-soluble yellow uranium salt with the formula UO2(NO3)2 · n H2O. The hexa-, tri-, and dihydrates are known. The compound is mainly of interest because it is an intermediate in the preparation of nuclear fuels.

Uranium dioxide Chemical compound

Uranium dioxide or uranium(IV) oxide , also known as urania or uranous oxide, is an oxide of uranium, and is a black, radioactive, crystalline powder that naturally occurs in the mineral uraninite. It is used in nuclear fuel rods in nuclear reactors. A mixture of uranium and plutonium dioxides is used as MOX fuel. Prior to 1960, it was used as yellow and black color in ceramic glazes and glass.

Andersonite Uranyl carbonate mineral

Andersonite, Na2Ca(UO2)(CO3)3·6H2O, or hydrated sodium calcium uranyl carbonate is a rare uranium carbonate mineral that was first described in 1948. Named after Charles Alfred Anderson (1902–1990) of the United States Geological Survey, who first described the mineral species, it is found in sandstone-hosted uranium deposits. It has a high vitreous to pearly luster and is fluorescent. Andersonite specimens will usually glow a bright lemon yellow (or green with blue hints depending on the deposit) in ultraviolet light. It is commonly found as translucent small rhombohedral crystals that have angles close to 90 degrees although its crystal system is nominally trigonal. Its Mohs hardness is 2.5, with an average specific gravity of 2.8.

Uranyl carbonate Chemical compound

Uranyl carbonate refers to the inorganic compound with the formula UO2CO3. Also known by its mineral name rutherfordine, this material consists of uranyl (UO22+) and carbonate (CO32-). The compound is a polymeric, each uranium(VI) center being bonded to eight O atoms. Hydrolysis products of rutherfordine are also found in both the mineral and organic fractions of coal and its fly ash and is the main component of uranium in mine tailing seepage water.

Coconinoite

Coconinoite is a uranium ore that was discovered in Coconino County, Arizona. It is a phosphate mineral; or uranyl phosphate mineral along with other subclass uranium U6+ minerals like blatonite, boltwoodite, metazeunerite and rutherfordine.

Fluorellestadite Nesosilicate mineral

Fluorellestadite is a rare nesosilicate of calcium, with sulfate and fluorine, with the chemical formula Ca10(SiO4)3(SO4)3F2. It is a member of the apatite group, and forms a series with hydroxylellestadite.

Znucalite or CaZn11(UO2)(CO3)3(OH)20·4(H2O) is a rare, radioactive, white to pale cream colored uranium-containing carbonate mineral, hydrated calcium zinc uranyl carbonate hydroxide. Znucalite crystallizes in the orthorhombic system, often forming aggregates or crusts, and is found as a rare secondary species in carbonate-hosted (meaning it is mined from carbonate containing formations such as limestone) polymetallic veins, and nearby oxidizing uranium veins; on dump material and coating mine walls, apparently of post-mine origin. It fluoresces yellow-green under UV light.

Uranium acid mine drainage

Uranium acid mine drainage refers to acidic water released from a uranium mining site using processes like underground mining and in-situ leaching. Underground, the ores are not as reactive due to isolation from atmospheric oxygen and water. When uranium ores are mined, the ores are crushed into a powdery substance, thus increasing surface area to easily extract uranium. The ores, along with nearby rocks, may also contain sulfide. Once exposed to the atmosphere, the powdered tailings react with atmospheric oxygen and water. After uranium extraction, sulfide minerals in uranium tailings facilitates the release of uranium radionuclides into the environment, which can undergo further radioactive decay while lowering the pH of a solution.

Meyrowitzite, Ca(UO2)(CO3)2·5H2O, is a carbonate mineral verified in May of 2018 by the Commission of New Minerals, Nomenclature and Classification of the International Mineralogical Association. It is an extremely rare mineral, discovered in the Markey mine Utah, U.S.A. The mineral is a transparent yellow and has blades up to approximately 0.2 mm in length. It is soluble in water or aqueous solutions. Meyrowitzite is named in honor of Robert Meyrowitz (1916-2013), an American analytical chemist. After serving in WW II, he joined the United States Geological Survey (USGS). He was known for developing innovative new methods for analyzing small and difficult to study mineralogical samples along with his formulation of the high-index immersion liquids.

Vandenbrandeite Oxide mineral

Vandenbrandeite is a mineral named after a belgian geologist, Pierre Van den Brande, who discovered an ore deposit. It was named in 1932, and has been a valid mineral ever since then.

Yingjiangite Fluorescent yellow mineral

Yingjiangite is a mineral named after its type locality in the Yingjiang county in 1990. It is a member of the phosphuranylite group, although the species was doubted by two geologists. It is easily confused with phosphuranylite, though the two geologists claim that the mineral might be identical to it, even though yingjiangite was approved in 1989-1990 by the IMA.

Bannisterite Silicate mineral

Bannisterite is a mineral named in honor of mineralogist and x-ray crystallographer Dr. Frederick Allen Bannister (1901-1970). It is a calcium-dominant member of the ganophyllite group, and was previously identified as ganophyllite in 1936, but otherwise it is structurally related to the stilpnomelane group. It was approved by the IMA in 1967.

Wöhlerite Silicate mineral

Wöhlerite, also known as wöehlerite is a member of the amphibole supergroup, and the wöhlerite subgroup within it. It was named after German chemist Friedrich Wöhler. It was first described by Scheerer in 1843, but the crystal structure was later solved by Mellino & Merlino in 1979. Once approved, it was grandfathered by the IMA.

References

  1. 1 2 3 "Zellerite". www.mindat.org. Retrieved 2021-09-24.
  2. 1 2 "Zellerite Mineral Data". webmineral.com. Retrieved 2021-09-24.
  3. 1 2 Coleman, R. G.; Ross, D. R.; Meyrowitz, R. (1966-12-01). "Zellerite and metazellerite, New Uranyl Carbonates1". American Mineralogist. 51 (11–12): 1567–1578. ISSN   0003-004X.