Zero force member

Last updated

In the field of engineering mechanics, a zero force member is a member (a single truss segment) in a truss which, given a specific load, is at rest: neither in tension, nor in compression.

Contents

Description

In a truss, a zero force member is often found at pins (any connections within the truss) where no external load is applied, and three or fewer truss members meet. Identification of basic zero force members can be accomplished by analyzing the forces acting on an individual pin in a physical system.

If the pin has an external force or moment applied to it, then all of the members attached to that pin are not zero force members unless the external force acts in a manner that fulfills one of the rules below:

Reasons to include zero force members in a truss system

It is a common practice to eliminate zero force members from a truss, to simplify analysis. Although an absolute minimalist design might eliminate all zero force elements from a truss, there are still sound reasons to retain some of these components in actual built systems:

See also

Sources

Related Research Articles

Statics is the branch of classical mechanics that is concerned with the analysis of force and torque (also called moment) acting on physical systems that do not experience an acceleration (a=0), but rather, are in static equilibrium with their environment. The application of Newton's second law to a system gives:

<span class="mw-page-title-main">Structural engineering</span> Sub-discipline of civil engineering dealing with the creation of man made structures

Structural engineering is a sub-discipline of civil engineering in which structural engineers are trained to design the 'bones and muscles' that create the form and shape of human-made structures. Structural engineers also must understand and calculate the stability, strength, rigidity and earthquake-susceptibility of built structures for buildings and nonbuilding structures. The structural designs are integrated with those of other designers such as architects and building services engineer and often supervise the construction of projects by contractors on site. They can also be involved in the design of machinery, medical equipment, and vehicles where structural integrity affects functioning and safety. See glossary of structural engineering.

<span class="mw-page-title-main">Stress (mechanics)</span> Physical quantity that expresses internal forces in a continuous material

In continuum mechanics, stress is a physical quantity that describes the magnitude of forces that cause deformation. Stress is defined as force per unit area. When an object is pulled apart by a force it will cause elongation which is also known as deformation, like the stretching of an elastic band, it is called tensile stress. When forces result in the compression of an object, it is called compressive stress. It results when forces like tension or compression act on a body. The greater this force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Therefore, stress is measured in newtons per square meter (N/m2) or pascal (Pa).

The field of strength of materials typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio. In addition, the mechanical element's macroscopic properties such as its length, width, thickness, boundary constraints and abrupt changes in geometry such as holes are considered.

Structural analysis is a branch of solid mechanics which uses simplified models for solids like bars, beams and shells for engineering decision making. Its main objective is to determine the effect of loads on the physical structures and their components. In contrast to theory of elasticity, the models used in structure analysis are often differential equations in one spatial variable. Structures subject to this type of analysis include all that must withstand loads, such as buildings, bridges, aircraft and ships. Structural analysis uses ideas from applied mechanics, materials science and applied mathematics to compute a structure's deformations, internal forces, stresses, support reactions, velocity, accelerations, and stability. The results of the analysis are used to verify a structure's fitness for use, often precluding physical tests. Structural analysis is thus a key part of the engineering design of structures.

<span class="mw-page-title-main">Truss</span> Rigid structure that consists of two-force members only

A truss is an assembly of members such as beams, connected by nodes, that creates a rigid structure.

<span class="mw-page-title-main">Free body diagram</span> Diagram showing applied forces and moments on a physical body

In physics and engineering, a free body diagram is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies). The body may consist of multiple internal members, or be a compact body. A series of free bodies and other diagrams may be necessary to solve complex problems.

Stress–strain analysis is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material.

<span class="mw-page-title-main">Cantilever bridge</span> Bridge built using cantilevers

A cantilever bridge is a bridge built using structures that project horizontally into space, supported on only one end. For small footbridges, the cantilevers may be simple beams; however, large cantilever bridges designed to handle road or rail traffic use trusses built from structural steel, or box girders built from prestressed concrete.

<span class="mw-page-title-main">Hydraulic cylinder</span> Mechanical tool for applying force

A hydraulic cylinder is a mechanical actuator that is used to give a unidirectional force through a unidirectional stroke. It has many applications, notably in construction equipment, manufacturing machinery, elevators, and civil engineering.

<span class="mw-page-title-main">Tension (physics)</span> Pulling force transmitted axially – Opposite of compression

In physics, tension is described as the pulling force transmitted axially by the means of a string, a rope, chain, or similar object, or by each end of a rod, truss member, or similar three-dimensional object; tension might also be described as the action-reaction pair of forces acting at each end of said elements. Tension could be the opposite of compression.

<span class="mw-page-title-main">Bending moment</span> Force tending to bend a structural element

In solid mechanics, a bending moment is the reaction induced in a structural element when an external force or moment is applied to the element, causing the element to bend. The most common or simplest structural element subjected to bending moments is the beam. The diagram shows a beam which is simply supported at both ends; the ends can only react to the shear loads. Other beams can have both ends fixed ; therefore each end support has both bending moments and shear reaction loads. Beams can also have one end fixed and one end simply supported. The simplest type of beam is the cantilever, which is fixed at one end and is free at the other end. In reality, beam supports are usually neither absolutely fixed nor absolutely rotating freely.

<span class="mw-page-title-main">Cremona diagram</span>

The Cremona diagram, also known as the Cremona-Maxwell method, is a graphical method used in statics of trusses to determine the forces in members. The method was developed by the Italian mathematician Luigi Cremona. However, recognizable Cremona diagrams appeared as early as 1725, in Pierre Varignon's posthumously published work, Nouvelle Méchanique ou Statique.

<span class="mw-page-title-main">Structural engineering theory</span>

Structural engineering depends upon a detailed knowledge of loads, physics and materials to understand and predict how structures support and resist self-weight and imposed loads. To apply the knowledge successfully structural engineers will need a detailed knowledge of mathematics and of relevant empirical and theoretical design codes. They will also need to know about the corrosion resistance of the materials and structures, especially when those structures are exposed to the external environment.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

This glossary of civil engineering terms is a list of definitions of terms and concepts pertaining specifically to civil engineering, its sub-disciplines, and related fields. For a more general overview of concepts within engineering as a whole, see Glossary of engineering.

This glossary of structural engineering terms pertains specifically to structural engineering and its sub-disciplines. Please see glossary of engineering for a broad overview of the major concepts of engineering.

A structural support is a part of a building or structure that provides the necessary stiffness and strength in order to resist the internal forces and guide them safely to the ground. External loads that act on buildings cause internal forces in building support structures. Supports can be either at the end or at any intermediate point along a structural member or a constituent part of a building and they are referred to as connections, joints or restraints.

Michell structures are structures that are optimal based on the criteria defined by A.G.M. Michell in his frequently referenced 1904 paper.

This glossary of engineering terms is a list of definitions about the major concepts of engineering. Please see the bottom of the page for glossaries of specific fields of engineering.