1-Iodomorphine

Last updated
1-Iodomorphine
1-Iodomorphine.svg
1-Iodomorphine-3D-balls.png
Names
IUPAC name
1-Iodo-17-methyl-7,8-didehydro-4,5α-epoxymorphinan-3,6α-diol
Systematic IUPAC name
(4R,4aR,7S,7aR,12bS)-11-Iodo-3-methyl-2,3,4,4a,7,7a-hexahydro-1H-4,12-methano[1]benzofuro[3,2-e]isoquinoline-7,9-diol
Other names
(5α,6α)-7,8-Didehydro-4,5-epoxy-1-iodo-17-methyl-morphinan-3,6-diol
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C17H18INO3/c1-19-5-4-17-9-2-3-12(20)16(17)22-15-13(21)7-10(18)8(14(15)17)6-11(9)19/h2-3,7,9,11-12,16,20-21H,4-6H2,1H3/t9-,11+,12-,16-,17-/m0/s1 Yes check.svgY
    Key: YFXOJQFZAJTGHD-GLWLLPOHSA-N Yes check.svgY
  • InChI=1/C17H18INO3/c1-19-5-4-17-9-2-3-12(20)16(17)22-15-13(21)7-10(18)8(14(15)17)6-11(9)19/h2-3,7,9,11-12,16,20-21H,4-6H2,1H3/t9-,11+,12-,16-,17-/m0/s1
    Key: YFXOJQFZAJTGHD-GLWLLPOHBC
  • O[C@H]1\C=C/[C@H]4[C@H]2Cc5c3c(O[C@@H]1[C@]34CCN2C)c(O)cc5I
Properties
C17H18INO3
Molar mass 411.239 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

1-Iodomorphine is a semi-synthetic narcotic analgesic formed by halogenation of the 1 position on the morphine carbon skeleton. [1] [2] [3] Halogenated morphine derivatives were first synthesised in Germany, Austria/Austria-Hungary, the United Kingdom and the United States in the period 1890 to 1930. Use of this drug increased after 1945 for the below-mentioned research. It is a research chemical which is often prepared in the laboratory when it is needed.

Along with the similar 2-iodomorphine as well as iodinated analogs of dihydromorphine, dihydrocodeine, heroin, and the fluorinated, chlorinated, and brominated analogues of this series, this change may not impact the activity of the drug to a notable extent[ citation needed ] but 1- and 2-iodomorphine are used in pharmacological, neurological, metabolic, and endocrine research as it allows the tagging of morphine with iodine-131 or iodine-129. [4] Such research was important in the discovery of opioid receptors in the central nervous system, peripheral nervous system, and other tissues in humans, mammals, birds, and some reptiles, amphibians, fish, insects, and arthropods.

Related Research Articles

<span class="mw-page-title-main">Morphine</span> Pain medication of the opiate family

Morphine is a strong opiate that is found naturally in opium, a dark brown resin produced by drying the latex of opium poppies. It is mainly used as an analgesic. There are numerous methods used to administer morphine: oral; sublingual; via inhalation; injection into a muscle, injection under the skin, or injection into the spinal cord area; transdermal; or via rectal suppository. It acts directly on the central nervous system (CNS) to induce analgesia and alter perception and emotional response to pain. Physical and psychological dependence and tolerance may develop with repeated administration. It can be taken for both acute pain and chronic pain and is frequently used for pain from myocardial infarction, kidney stones, and during labor. Its maximum effect is reached after about 20 minutes when administered intravenously and 60 minutes when administered by mouth, while the duration of its effect is 3–7 hours. Long-acting formulations of morphine are available as MS-Contin, Kadian, and other brand names as well as generically.

<span class="mw-page-title-main">Opioid</span> Psychoactive chemical

Opioids are a class of drugs that derive from, or mimic, natural substances found in the opium poppy plant. Opioids work in the brain to produce a variety of effects, including pain relief. As a class of substances, they act on opioid receptors to produce morphine-like effects.

<span class="mw-page-title-main">Opioid receptor</span> Group of biological receptors

Opioid receptors are a group of inhibitory G protein-coupled receptors with opioids as ligands. The endogenous opioids are dynorphins, enkephalins, endorphins, endomorphins and nociceptin. The opioid receptors are ~40% identical to somatostatin receptors (SSTRs). Opioid receptors are distributed widely in the brain, in the spinal cord, on peripheral neurons, and digestive tract.

<span class="mw-page-title-main">Dihydromorphine</span> Semi-synthetic opioid analgesic drug

Dihydromorphine is a semi-synthetic opioid structurally related to and derived from morphine. The 7,8-double bond in morphine is reduced to a single bond to get dihydromorphine. Dihydromorphine is a moderately strong analgesic and is used clinically in the treatment of pain and also is an active metabolite of the analgesic opioid drug dihydrocodeine. Dihydromorphine occurs in trace quantities in assays of opium on occasion, as does dihydrocodeine, dihydrothebaine, tetrahydrothebaine, etc. The process for manufacturing dihydromorphine from morphine for pharmaceutical use was developed in Germany in the late 19th century, with the synthesis being published in 1900 and the drug introduced clinically as Paramorfan shortly thereafter. A high-yield synthesis from tetrahydrothebaine was later developed.

<span class="mw-page-title-main">Etonitazene</span> Chemical compound

Etonitazene, also known as EA-4941 or CS-4640, is a benzimidazole opioid, first reported in 1957, that has been shown to have approximately 1,000 to 1,500 times the potency of morphine in animals.

<span class="mw-page-title-main">Aporphine</span> Chemical compound

Aporphine is an alkaloid with the chemical formula C17H17N. It is the core chemical substructure of the aporphine alkaloids, a subclass of quinoline alkaloids. It can exist in either of two enantiomeric forms, (R)-aporphine and (S)-aporphine.

<span class="mw-page-title-main">BIMU8</span> Chemical compound

BIMU-8 is a drug which acts as a 5-HT4 receptor selective agonist. BIMU-8 was one of the first compounds of this class. The main action of BIMU-8 is to increase the rate of respiration by activating an area of the brain stem known as the pre-Botzinger complex.

<span class="mw-page-title-main">Metopon</span> Analgesic drug

Metopon is an opioid analogue that is a methylated derivative of hydromorphone which was invented in 1929 as an analgesic.

<span class="mw-page-title-main">Ohmefentanyl</span> Chemical compound

Ohmefentanyl is an extremely potent opioid analgesic drug which selectively binds to the µ-opioid receptor.

<span class="mw-page-title-main">Troparil</span> Chemical compound

Troparil is a stimulant drug used in scientific research. Troparil is a phenyltropane-based dopamine reuptake inhibitor (DRI) that is derived from methylecgonidine. Troparil is a few times more potent than cocaine as a dopamine reuptake inhibitor, but is less potent as a serotonin reuptake inhibitor, and has a duration spanning a few times longer, since the phenyl ring is directly connected to the tropane ring through a non-hydrolyzable carbon-carbon bond. The lack of an ester linkage removes the local anesthetic action from the drug, so troparil is a pure stimulant. This change in activity also makes troparil slightly less cardiotoxic than cocaine. The most commonly used form of troparil is the tartrate salt, but the hydrochloride and naphthalenedisulfonate salts are also available, as well as the free base.

<span class="mw-page-title-main">Metazocine</span> Opioid analgesic

Metazocine is an opioid analgesic related to pentazocine. While metazocine has significant analgesic effects, mediated through a mixed agonist–antagonist action at the mu opioid receptor, its clinical use is limited by dysphoric and hallucinogenic effects which are most likely caused by activity at kappa opioid receptors and/or sigma receptors.

<span class="mw-page-title-main">Azaprocin</span> Opioid analgesic drug

Azaprocin is a drug which is an opioid analgesic with approximately ten times the potency of morphine, and a fast onset and short duration of action. It was discovered in 1963, but has never been marketed.

<span class="mw-page-title-main">JDTic</span> Chemical compound

JDTic is a selective, long-acting ("inactivating") antagonist of the κ-opioid receptor (KOR). JDTic is a 4-phenylpiperidine derivative, distantly related structurally to analgesics such as pethidine and ketobemidone, and more closely to the MOR antagonist alvimopan. In addition, it is structurally distinct from other KOR antagonists such as norbinaltorphimine. JDTic has been used to create crystal structures of KOR [ PDB: 4DJH, 6VI4​].

<span class="mw-page-title-main">Alazocine</span> Synthetic opioid analgesic

Alazocine, also known more commonly as N-allylnormetazocine (NANM), is a synthetic opioid analgesic of the benzomorphan family related to metazocine, which was never marketed. In addition to its opioid activity, the drug is a sigma receptor agonist, and has been used widely in scientific research in studies of this receptor. Alazocine is described as a potent analgesic, psychotomimetic or hallucinogen, and opioid antagonist. Moreover, one of its enantiomers was the first compound that was found to selectively label the σ1 receptor, and led to the discovery and characterization of the receptor.

<span class="mw-page-title-main">Arylcyclohexylamine</span> Class of chemical compounds

Arylcyclohexylamines, also known as arylcyclohexamines or arylcyclohexanamines, are a chemical class of pharmaceutical, designer, and experimental drugs.

<span class="mw-page-title-main">Dextrallorphan</span> Chemical compound

Dextrallorphan (DXA) is a chemical of the morphinan class that is used in scientific research. It acts as a σ1 receptor agonist and NMDA receptor antagonist. It has no significant affinity for the σ2, μ-opioid, or δ-opioid receptor, or for the serotonin or norepinephrine transporter. As an NMDA receptor antagonist, in vivo, it is approximately twice as potent as dextromethorphan, and five-fold less potent than dextrorphan.

<i>N</i>-Phenethylnormorphine Chemical compound

N-Phenethylnormorphine is an opioid analgesic drug derived from morphine by replacing the N-methyl group with β-phenethyl. It is around eight to fourteen times more potent than morphine as a result of this modification, in contrast to most other N-substituted derivatives of morphine, which are substantially less active, or act as antagonists. Binding studies have helped to explain the increased potency of N-phenethylnormorphine, showing that the phenethyl group extends out to reach an additional binding point deeper inside the μ-opioid receptor cleft, analogous to the binding of the phenethyl group on fentanyl.

<span class="mw-page-title-main">MT-45</span> Chemical compound

MT-45 (IC-6) is an opioid analgesic drug invented in the 1970s by Dainippon Pharmaceutical Co. It is chemically a 1-substituted-4-(1,2-diphenylethyl) piperazine derivative, which is structurally unrelated to most other opioid drugs. Racemic MT-45 has around 80% the potency of morphine, with almost all opioid activity residing in the (S) enantiomer. It has been used as a lead compound from which a large family of potent opioid drugs have been developed, including full agonists, partial agonists, and antagonists at the three main opioid receptor subtypes. Fluorinated derivatives of MT-45 such as 2F-MT-45 are significantly more potent as μ-opioid receptor agonists, and one of its main metabolites 1,2-diphenylethylpiperazine also blocks NMDA receptors.

<span class="mw-page-title-main">3-HO-PCP</span> Chemical compound

3-Hydroxyphencyclidine (3-HO-PCP) is a dissociative of the arylcyclohexylamine class related to phencyclidine (PCP) that has been sold online as a designer drug.

<span class="mw-page-title-main">HS665</span> Chemical compound

HS665 is a drug which acts as a potent and selective κ-opioid receptor agonist, and has analgesic effects in animal studies. HS665 is not an agonist for the mu receptor, leading to less potential for abuse.

References

  1. Liebman, A. A.; Malarek, D. H.; Blount, J. F.; Nelson, N. R.; Delaney, C. M. (1978). "Preparation and crystal structure of 6-acetyl-1-iodocodeine". The Journal of Organic Chemistry. 43 (4): 737–739. doi:10.1021/jo00398a049.
  2. Seltzman, H. H.; Roche, M. J.; Laudeman, C. P.; Wyrick, C. D.; Carroll, F. I. (1998). "Protection of the allylic alcohol double bond from catalytic reduction in the preparation of [1-3H]morphine and [1-3H]codeine". Journal of Labelled Compounds and Radiopharmaceuticals. 41 (9): 811–821. doi:10.1002/(SICI)1099-1344(1998090)41:9<811::AID-JLCR132>3.0.CO;2-3.
  3. Wentland, M. P.; Duan, W.; Cohen, D. J.; Bidlack, J. M. (2000). "Selective Protection and Functionalization of Morphine: Synthesis and Opioid Receptor Binding Properties of 3-Amino-3-desoxymorphine Derivatives". Journal of Medicinal Chemistry. 43 (19): 3558–3565. doi:10.1021/jm000119i. PMID   11000010.
  4. Tafani, J. A.; Lazorthes, Y.; Danet, B.; Verdie, J. C.; Esquerre, J. P.; Simon, J.; Guiraud, R. (1989). "Human brain and spinal cord scan after intracerebroventricular administration of iodine-123 morphine". International Journal of Radiation Applications and Instrumentation. Part B, Nuclear Medicine and Biology. 16 (5): 505–509. doi:10.1016/0883-2897(89)90064-0. PMID   2807956.