Arrestin beta 2

Last updated
ARRB2
Identifiers
Aliases ARRB2 , ARB2, ARR2, BARR2, Arrestin beta 2
External IDs OMIM: 107941 MGI: 99474 HomoloGene: 3183 GeneCards: ARRB2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001271358
NM_001271359
NM_001271360
NM_145429

RefSeq (protein)

NP_001258287
NP_001258288
NP_001258289
NP_663404

Location (UCSC) Chr 17: 4.71 – 4.72 Mb Chr 11: 70.32 – 70.33 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Beta-arrestin-2, also known as arrestin beta-2, is an intracellular protein that in humans is encoded by the ARRB2 gene.

Contents

Members of arrestin/beta-arrestin protein family are thought to participate in agonist-mediated desensitization of G protein-coupled receptors and cause specific dampening of cellular responses to stimuli such as hormones, neurotransmitters, or sensory signals, [5] [6] [7] as well as having signalling roles in their own right. [8] [9] [10] [11] [12] Arrestin beta 2, like arrestin beta 1, was shown to inhibit beta-adrenergic receptor function in vitro. It is expressed at high levels in the central nervous system and may play a role in the regulation of synaptic receptors. Besides the brain, a cDNA for arrestin beta 2 was isolated from thyroid gland, and thus it may also be involved in hormone-specific desensitization of TSH receptors. Multiple alternatively spliced transcript variants have been found for this gene, but the full-length nature of some variants has not been defined. [13]

The protein may interact with the agonist DOI in 5-HT2A receptor signaling. [14] [15]

Arrestin beta 2 is crucial for the development of tolerance to morphine and other opioids.

Interactions

Arrestin beta 2 has been shown to interact with

Related Research Articles

<span class="mw-page-title-main">G protein-coupled receptor</span> Class of cell surface receptors coupled to G-protein-associated intracellular signaling

G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily related proteins that are cell surface receptors that detect molecules outside the cell and activate cellular responses. They are coupled with G proteins. They pass through the cell membrane seven times in the form of six loops of amino acid residues, which is why they are sometimes referred to as seven-transmembrane receptors. Ligands can bind either to the extracellular N-terminus and loops or to the binding site within transmembrane helices. They are all activated by agonists, although a spontaneous auto-activation of an empty receptor has also been observed.

<span class="mw-page-title-main">Beta-1 adrenergic receptor</span> Protein-coding gene in the species Homo sapiens

The beta-1 adrenergic receptor, also known as ADRB1, can refer to either the protein-encoding gene or one of the four adrenergic receptors. It is a G-protein coupled receptor associated with the Gs heterotrimeric G-protein that is expressed predominantly in cardiac tissue. In addition to cardiac tissue, beta-1 adrenergic receptors are also expressed in the cerebral cortex.

<span class="mw-page-title-main">Beta-2 adrenergic receptor</span> Mammalian protein found in humans

The beta-2 adrenergic receptor, also known as ADRB2, is a cell membrane-spanning beta-adrenergic receptor that binds epinephrine (adrenaline), a hormone and neurotransmitter whose signaling, via adenylate cyclase stimulation through trimeric Gs proteins, increases cAMP, and, via downstream L-type calcium channel interaction, mediates physiologic responses such as smooth muscle relaxation and bronchodilation.

<span class="mw-page-title-main">Arrestin</span> Family of proteins

Arrestins are a small family of proteins important for regulating signal transduction at G protein-coupled receptors. Arrestins were first discovered as a part of a conserved two-step mechanism for regulating the activity of G protein-coupled receptors (GPCRs) in the visual rhodopsin system by Hermann Kühn, Scott Hall, and Ursula Wilden and in the β-adrenergic system by Martin J. Lohse and co-workers.

<span class="mw-page-title-main">G protein-coupled receptor kinase</span>

G protein-coupled receptor kinases are a family of protein kinases within the AGC group of kinases. Like all AGC kinases, GRKs use ATP to add phosphate to Serine and Threonine residues in specific locations of target proteins. In particular, GRKs phosphorylate intracellular domains of G protein-coupled receptors (GPCRs). GRKs function in tandem with arrestin proteins to regulate the sensitivity of GPCRs for stimulating downstream heterotrimeric G protein and G protein-independent signaling pathways.

<span class="mw-page-title-main">G protein-coupled receptor kinase 2</span> Enzyme

G-protein-coupled receptor kinase 2 (GRK2) is an enzyme that in humans is encoded by the ADRBK1 gene. GRK2 was initially called Beta-adrenergic receptor kinase, and is a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinases that is most highly similar to GRK3(βARK2).

Rhodopsin kinase is a serine/threonine-specific protein kinase involved in phototransduction. This enzyme catalyses the following chemical reaction:

<span class="mw-page-title-main">Alpha-2A adrenergic receptor</span> Protein-coding gene in the species Homo sapiens

The alpha-2A adrenergic receptor, also known as ADRA2A, is an α2 adrenergic receptor, and also denotes the human gene encoding it.

<span class="mw-page-title-main">Alpha-1B adrenergic receptor</span> Protein-coding gene in the species Homo sapiens

The alpha-1B adrenergic receptor1B-adrenoreceptor), also known as ADRA1B, is an alpha-1 adrenergic receptor, and also denotes the human gene encoding it. The crystal structure of the α1B-adrenergic receptor has been determined in complex with the inverse agonist (+)-cyclazosin.

<span class="mw-page-title-main">Arrestin beta 1</span> Human protein and coding gene

Arrestin, beta 1, also known as ARRB1, is a protein which in humans is encoded by the ARRB1 gene.

<span class="mw-page-title-main">GRK6</span> Protein-coding gene in the species Homo sapiens

This gene encodes a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinase family, and is most highly similar to GRK4 and GRK5. The protein phosphorylates the activated forms of G protein-coupled receptors to regulate their signaling.

<span class="mw-page-title-main">CYTH2</span> Protein-coding gene in the species Homo sapiens

Cytohesin-2 is a protein that in humans is encoded by the CYTH2 gene.

<span class="mw-page-title-main">GRK5</span> Protein-coding gene in the species Homo sapiens

G protein-coupled receptor kinase 5 is a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinases, and is most highly similar to GRK4 and GRK6. The protein phosphorylates the activated forms of G protein-coupled receptors to regulate their signaling.

<span class="mw-page-title-main">SAG (gene)</span>

S-arrestin is a protein that in humans is encoded by the SAG gene.

<span class="mw-page-title-main">GRK4</span> Protein-coding gene in the species Homo sapiens

G protein-coupled receptor kinase 4 (GRK4) is an enzyme that is encoded by the GRK4 gene in humans.

<span class="mw-page-title-main">Homologous desensitization</span> When a receptor decreases its response to an agonist at high concentration

Homologous desensitization occurs when a receptor decreases its response to an agonist at high concentration. It is a process through which, after prolonged agonist exposure, the receptor is uncoupled from its signaling cascade and thus the cellular effect of receptor activation is attenuated.

<span class="mw-page-title-main">G beta-gamma complex</span>

The G beta-gamma complex (Gβγ) is a tightly bound dimeric protein complex, composed of one Gβ and one Gγ subunit, and is a component of heterotrimeric G proteins. Heterotrimeric G proteins, also called guanosine nucleotide-binding proteins, consist of three subunits, called alpha, beta, and gamma subunits, or Gα, Gβ, and Gγ. When a G protein-coupled receptor (GPCR) is activated, Gα dissociates from Gβγ, allowing both subunits to perform their respective downstream signaling effects. One of the major functions of Gβγ is the inhibition of the Gα subunit.

G-protein-coupled receptor kinase 7 is a serine/threonine-specific protein kinase involved in phototransduction. This enzyme catalyses the phosphorylation of cone (color) photopsins in retinal cones during high acuity color vision primarily in the fovea.

<span class="mw-page-title-main">G protein-coupled receptor kinase 3</span> Protein-coding gene in the species Homo sapiens

G-protein-coupled receptor kinase 3 (GRK3) is an enzyme that in humans is encoded by the ADRBK2 gene. GRK3 was initially called Beta-adrenergic receptor kinase 2 (βARK-2), and is a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinases that is most highly similar to GRK2.

<span class="mw-page-title-main">Alpha Arrestin</span>

The arrestin family of proteins is subdivided into α-arrestins (also referred to as arrestin-related trafficking adaptors or arrestin-like yeast proteins in yeast or ARRDCs in mammals, β-arrestins and Vps26-like arrestins proteins. The α-Arrestins are an ancestral branch of the larger arrestin family of proteins and they are conserved across eukaryotes but are best characterized in the budding yeast Saccharomyces cerevisiae; to-date there are 6 α-arrestins identified in mammalian cells and 14 α-arrestins identified in the budding yeast Saccharomyces cerevisiae. The yeast α-arrestin family comprises Ldb19/Art1, Ecm21/Art2, Aly1/Art6, Aly2/Art3, Rod1/Art4, Rog3/Art7, Art5, Csr2/Art8, Rim8/Art9, Art10, Bul1, Bul2, Bul3 and Spo23. The best characterized α-arrestin function to date is their endocytic regulation of plasma membrane proteins, including G-protein coupled receptors and nutrient transporters. α-Arrestins control endocytosis of these membrane proteins in response to cellular stressors, including nutrient or metal ion excess.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000141480 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000060216 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Breivogel CS, Lambert JM, Gerfin S, Huffman JW, Razdan RK (July 2008). "Sensitivity to delta9-tetrahydrocannabinol is selectively enhanced in beta-arrestin2 -/- mice". Behavioural Pharmacology. 19 (4): 298–307. doi:10.1097/FBP.0b013e328308f1e6. PMC   2751575 . PMID   18622177.
  6. Li Y, Liu X, Liu C, Kang J, Yang J, Pei G, Wu C (March 2009). "Improvement of morphine-mediated analgesia by inhibition of β-arrestin2 expression in mice periaqueductal gray matter". International Journal of Molecular Sciences. 10 (3): 954–63. doi: 10.3390/ijms10030954 . PMC   2672012 . PMID   19399231.
  7. Zheng H, Loh HH, Law PY (January 2008). "Beta-arrestin-dependent mu-opioid receptor-activated extracellular signal-regulated kinases (ERKs) Translocate to Nucleus in Contrast to G protein-dependent ERK activation". Molecular Pharmacology. 73 (1): 178–90. doi:10.1124/mol.107.039842. PMC   2253657 . PMID   17947509.
  8. Ma L, Pei G (January 2007). "Beta-arrestin signaling and regulation of transcription". Journal of Cell Science. 120 (Pt 2): 213–8. doi: 10.1242/jcs.03338 . PMID   17215450.
  9. Defea K (March 2008). "Beta-arrestins and heterotrimeric G-proteins: collaborators and competitors in signal transduction". British Journal of Pharmacology. 153 Suppl 1 (S1): S298-309. doi:10.1038/sj.bjp.0707508. PMC   2268080 . PMID   18037927.
  10. Barki-Harrington L, Rockman HA (February 2008). "Beta-arrestins: multifunctional cellular mediators". Physiology. 23: 17–22. doi:10.1152/physiol.00042.2007. PMID   18268361.
  11. Patel PA, Tilley DG, Rockman HA (March 2009). "Physiologic and cardiac roles of beta-arrestins". Journal of Molecular and Cellular Cardiology. 46 (3): 300–8. doi:10.1016/j.yjmcc.2008.11.015. PMID   19103204.
  12. Golan M, Schreiber G, Avissar S (2009). "Antidepressants, beta-arrestins and GRKs: from regulation of signal desensitization to intracellular multifunctional adaptor functions". Current Pharmaceutical Design. 15 (14): 1699–708. doi:10.2174/138161209788168038. PMID   19442183.
  13. "ARRB2 arrestin beta 2 [ Homo sapiens (human) ]". National Center for Biotechnology Information.
  14. Schmid CL, Raehal KM, Bohn LM (January 2008). "Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin-2 interactions in vivo". Proceedings of the National Academy of Sciences of the United States of America. 105 (3): 1079–84. doi: 10.1073/pnas.0708862105 . PMC   2242710 . PMID   18195357.
  15. Abbas A, Roth BL (January 2008). "Arresting serotonin". Proceedings of the National Academy of Sciences of the United States of America. 105 (3): 831–2. Bibcode:2008PNAS..105..831A. doi: 10.1073/pnas.0711335105 . PMC   2242676 . PMID   18195368.
  16. Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG, Barak LS (March 1999). "The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis". Proceedings of the National Academy of Sciences of the United States of America. 96 (7): 3712–7. Bibcode:1999PNAS...96.3712L. doi: 10.1073/pnas.96.7.3712 . PMC   22359 . PMID   10097102.
  17. Kim YM, Benovic JL (August 2002). "Differential roles of arrestin-2 interaction with clathrin and adaptor protein 2 in G protein-coupled receptor trafficking". The Journal of Biological Chemistry. 277 (34): 30760–8. doi: 10.1074/jbc.M204528200 . PMID   12070169.
  18. Claing A, Chen W, Miller WE, Vitale N, Moss J, Premont RT, Lefkowitz RJ (November 2001). "beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis". The Journal of Biological Chemistry. 276 (45): 42509–13. doi: 10.1074/jbc.M108399200 . PMID   11533043.
  19. Wang P, Gao H, Ni Y, Wang B, Wu Y, Ji L, Qin L, Ma L, Pei G (February 2003). "Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2". The Journal of Biological Chemistry. 278 (8): 6363–70. doi: 10.1074/jbc.M210350200 . PMID   12488444.
  20. Wang P, Wu Y, Ge X, Ma L, Pei G (March 2003). "Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus". The Journal of Biological Chemistry. 278 (13): 11648–53. doi: 10.1074/jbc.M208109200 . PMID   12538596.
  21. Shenoy SK, Xiao K, Venkataramanan V, Snyder PM, Freedman NJ, Weissman AM (August 2008). "Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor". The Journal of Biological Chemistry. 283 (32): 22166–76. doi: 10.1074/jbc.M709668200 . PMC   2494938 . PMID   18544533.
  22. Bhattacharya M, Anborgh PH, Babwah AV, Dale LB, Dobransky T, Benovic JL, Feldman RD, Verdi JM, Rylett RJ, Ferguson SS (August 2002). "Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization". Nature Cell Biology. 4 (8): 547–55. doi:10.1038/ncb821. PMID   12105416. S2CID   20784208.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.