Cerebellopontine angle syndrome

Last updated
Cerebellopontine angle syndrome
Typesneurology

The cerebellopontine angle syndrome is a distinct neurological syndrome of deficits that can arise due to the closeness of the cerebellopontine angle to specific cranial nerves. [1] Indications include unilateral hearing loss (85%), speech impediments, disequilibrium, tremors or other loss of motor control. The cerebellopontine angle cistern is a subarachnoid cistern formed by the cerebellopontine angle that lies between the cerebellum and the pons. It is filled with cerebrospinal fluid and is a common site for the growth of acoustic neuromas or schwannomas.

Contents

Signs and symptoms

Tumors within the nerve canaliculi initially present with unilateral sensorineural hearing loss, unilateral tinnitus, or disequilibrium (vertigo is rare, on account of the slow growth of neuromas). Speech discrimination out of proportion to hearing loss, difficulty talking on the telephone are frequent accompaniments. Tumors extending into the CPA will likely present with disequilibrium or ataxia depending on the amount of extension on the brainstem. With brainstem extension, midfacial and corneal hypesthesia, hydrocephalus, and other cranial neuropathies become more prevalent. Involvement of CN V from a cerebellopontine mass lesion often results in loss of the ipsilateral (same side of the body) corneal reflex, orinvoluntary blink.

Patients with larger tumours can develop Bruns nystagmus ('dancing eyes') due to compression of the flocculi. [2]

Causes

In most cases, the cause of acoustic neuromas is unknown. The only statistically significant risk factor for developing an acoustic neuroma is having a rare genetic condition called neurofibromatosis type 2 (NF2). There are no confirmed environmental risk factors for acoustic neuroma. There are conflicting studies on the association between acoustic neuromas and cellular phone use and repeated exposure to loud noise. In 2011, an arm of the World Health Organization released a statement listing cell phone use as a low grade cancer risk. The Acoustic Neuroma Association recommends that cell phone users use a hands-free device.

Meningiomas are significantly more common in women than in men; they are most common in middle-aged women. Two predisposing factors associated with meningiomas for which at least some evidence exists are exposure to ionizing radiation (cancer treatment of brain tumors) and hormone replacement therapy.

Pathophysiology

Various kinds of tumors, usually primary and benign, are represented in the pathology. Lesions in the area of cerebellopontine angle cause signs and symptoms secondary to compression of nearby cranial nerves, including cranial nerve V (trigeminal), cranial nerve VII (facial), and cranial nerve VIII (vestibulocochlear). The most common cerebellopontine angle (CPA) tumor is a vestibular schwannoma affecting cranial nerve VIII (80%), followed by meningioma (10%). The cranial nerves affected are (from most common to least common) : VIII (cochlear component), VIII (vestibular component), V

Diagnosis

Radiography

Subsequent to diagnosis of sensorineural hearing loss, and differential diagnosis of retrocochlear or neural etiologies, radiological assessment of the CPA is performed to assess the presence of anatomical retrocochlear lesions.

Traditional protocols

Before the advent of MRI, electronystagmography and Computed Tomography were employed for diagnosis of acoustic neuroma.

Auditory brainstem response audiometry and adjunct tests

The auditory brainstem response (ABR) test gives information about the inner ear (cochlea) and nerve pathways for hearing via ongoing electrical activity in the brain measured by electrodes placed on the scalp. Five different waves (I to V) are measured for each ear. Each waveform represents specific anatomical points along the auditory neural pathway. Delays of one side relative to the other suggest a lesion in cranial nerve VIII between the ear and brainstem or in the brainstem itself. The most reliable indicator for acoustic neuromas from the ABR is the interaural latency differences in wave V: the latency in the impaired ear is prolonged. Different studies have indicated the sensitivity of ABR for detection of acoustic neuromas 1cm or larger to be between 90 and 95%. Sensitivity for neuromas smaller than 1cm are 63-77%. A newer technology, stacked ABR, may have sensitivity as high as 95% with specificity 88% for smaller tumors. ABR is considerably more cost effective, but MRI provides more information.

Stapedius reflex (SR) and caloric vestibular response (CVR) are non-invasive otologic tests for auditory neural function. These are not primary diagnostics for CPA neuromas, and are usually used in conjunction with ABR.

Magnetic resonance imaging

Several different types of magnetic resonance imaging (MRI) may be employed in diagnosis: MRI without contrast, Gd contrast enhanced T1-weighted MRI (GdT1W) or T2-weighted enhanced MRI (T2W or T2*W). Non-contrast enhanced MRI is considerably less expensive than any of the contrast enhanced MRI scans. The gold standard in diagnosis is GdT1W MRI. The reliability of non-contrast enhanced MRI is highly dependent on the sequence of scans, and the experience of the operator.

Management

Acoustic neuromas are managed by either surgery, radiation therapy, or observation with regular MRI scanning. With treatment, the likelihood of hearing preservation varies inversely with the size of the tumor; for large tumors, preservation of hearing is rare. Because acoustic neuromas, meningiomas and most other CPA tumors are benign, slow growing or non-growing, and non-invasive, observation is a viable management option.

Stereotactic radiosurgery

The objective of irradiation is to halt the growth of the acoustic neuroma tumour, it does not excise it from the body, as the term 'radiosurgery' or 'gammaknife' implies. Radiosurgery is only suitable for small to medium size tumors.

Surgical

There are three modalities of surgical treatment (excision) depending on where the anatomical location of the incision to access the tumor is made: retrosigmoid (a variant of what was formerly called suboccipital), translabyrinthine, and middle fossa.

The goals of surgery are to control the tumor, and preserve hearing as well as facial nerves. Especially in the case of larger tumors, there may be a tradeoff between tumor removal and preservation of nerve functionality. There are different defined degrees of surgical excision, termed 'subtotal resection', 'radical subtotal resection', 'near-total resection', and 'total resection' in order or increasing proportion of tumor removed. Lesser amount of tumor removal may increase likelihood of preservation of nerve function (hence better post-operative hearing), but also likelihood of tumor regrowth, necessitating additional treatment.

Outcome and complications

The overall complication rate following surgery is around 20%; cerebrospinal fluid leak is the most common.

See also

Related Research Articles

<span class="mw-page-title-main">Cranial nerves</span> Nerves that emerge directly from the brain and the brainstem

Cranial nerves are the nerves that emerge directly from the brain, of which there are conventionally considered twelve pairs. Cranial nerves relay information between the brain and parts of the body, primarily to and from regions of the head and neck, including the special senses of vision, taste, smell, and hearing.

<span class="mw-page-title-main">Brainstem</span> Posterior part of the brain, adjoining and structurally continuous

The brainstem is the posterior stalk-like part of the brain that connects the cerebrum with the spinal cord. In the human brain the brainstem is composed of the midbrain, the pons, and the medulla oblongata. The midbrain is continuous with the thalamus of the diencephalon through the tentorial notch, and sometimes the diencephalon is included in the brainstem.

<span class="mw-page-title-main">Vestibulocochlear nerve</span> Cranial nerve VIII, for hearing and balance

The vestibulocochlear nerve or auditory vestibular nerve, also known as the eighth cranial nerve, cranial nerve VIII, or simply CN VIII, is a cranial nerve that transmits sound and equilibrium (balance) information from the inner ear to the brain. Through olivocochlear fibers, it also transmits motor and modulatory information from the superior olivary complex in the brainstem to the cochlea.

<span class="mw-page-title-main">Dizziness</span> Neurological condition causing impairment in spatial perception and stability

Dizziness is an imprecise term that can refer to a sense of disorientation in space, vertigo, or lightheadedness. It can also refer to disequilibrium or a non-specific feeling, such as giddiness or foolishness.

<span class="mw-page-title-main">Vestibular schwannoma</span> Medical condition

A vestibular schwannoma (VS), also called acoustic neuroma, is a benign tumor that develops on the vestibulocochlear nerve that passes from the inner ear to the brain. The tumor originates when Schwann cells that form the insulating myelin sheath on the nerve malfunction. Normally, Schwann cells function beneficially to protect the nerves which transmit balance and sound information to the brain. However, sometimes a mutation in the tumor suppressor gene, NF2, located on chromosome 22, results in abnormal production of the cell protein named Merlin, and Schwann cells multiply to form a tumor. The tumor originates mostly on the vestibular division of the nerve rather than the cochlear division, but hearing as well as balance will be affected as the tumor enlarges.

Spinal tumors are neoplasms located in either the vertebral column or the spinal cord. There are three main types of spinal tumors classified based on their location: extradural and intradural. Extradural tumors are located outside the dura mater lining and are most commonly metastatic. Intradural tumors are located inside the dura mater lining and are further subdivided into intramedullary and extramedullary tumors. Intradural-intramedullary tumors are located within the dura and spinal cord parenchyma, while intradural-extramedullary tumors are located within the dura but outside the spinal cord parenchyma. The most common presenting symptom of spinal tumors is nocturnal back pain. Other common symptoms include muscle weakness, sensory loss, and difficulty walking. Loss of bowel and bladder control may occur during the later stages of the disease.

<span class="mw-page-title-main">Facial nerve paralysis</span> Medical condition

Facial nerve paralysis is a common problem that involves the paralysis of any structures innervated by the facial nerve. The pathway of the facial nerve is long and relatively convoluted, so there are a number of causes that may result in facial nerve paralysis. The most common is Bell's palsy, a disease of unknown cause that may only be diagnosed by exclusion of identifiable serious causes.

<span class="mw-page-title-main">Otology</span> Branch of medicine for the ear

Otology is a branch of medicine which studies normal and pathological anatomy and physiology of the ear as well as their diseases, diagnosis and treatment. Otologic surgery generally refers to surgery of the middle ear and mastoid related to chronic otitis media, such as tympanoplasty, or ear drum surgery, ossiculoplasty, or surgery of the hearing bones, and mastoidectomy. Otology also includes surgical treatment of conductive hearing loss, such as stapedectomy surgery for otosclerosis.

Intraoperative neurophysiological monitoring (IONM) or intraoperative neuromonitoring is the use of electrophysiological methods such as electroencephalography (EEG), electromyography (EMG), and evoked potentials to monitor the functional integrity of certain neural structures during surgery. The purpose of IONM is to reduce the risk to the patient of iatrogenic damage to the nervous system, and/or to provide functional guidance to the surgeon and anesthesiologist.

<span class="mw-page-title-main">Neurofibromatosis type II</span> Type of neurofibromatosis disease

Neurofibromatosis type II is a genetic condition that may be inherited or may arise spontaneously, and causes benign tumors of the brain, spinal cord, and peripheral nerves. The types of tumors frequently associated with NF2 include vestibular schwannomas, meningiomas, and ependymomas. The main manifestation of the condition is the development of bilateral benign brain tumors in the nerve sheath of the cranial nerve VIII, which is the "auditory-vestibular nerve" that transmits sensory information from the inner ear to the brain. Besides, other benign brain and spinal tumors occur. Symptoms depend on the presence, localisation and growth of the tumor(s), in which multiple cranial nerves can be involved. Many people with this condition also experience vision problems. Neurofibromatosis type II is caused by mutations of the "Merlin" gene, which seems to influence the form and movement of cells. The principal treatments consist of neurosurgical removal of the tumors and surgical treatment of the eye lesions. Historically the underlying disorder has not had any therapy due to the cell function caused by the genetic mutation.

<span class="mw-page-title-main">Cerebellopontine angle</span> Structure between the cerebellum and pons

The cerebellopontine angle (CPA) is located between the cerebellum and the pons. The cerebellopontine angle is the site of the cerebellopontine angle cistern one of the subarachnoid cisterns that contains cerebrospinal fluid, arachnoid tissue, cranial nerves, and associated vessels. The cerebellopontine angle is also the site of a set of neurological disorders known as the cerebellopontine angle syndrome.

<span class="mw-page-title-main">Schwannomatosis</span> Rare genetic disorder

Schwannomatosis is an extremely rare genetic disorder closely related to the more-common disorder neurofibromatosis (NF). Originally described in Japanese patients, it consists of multiple cutaneous schwannomas, central nervous system tumors, and other neurological complications, excluding hallmark signs of NF. The exact frequency of schwannomatosis cases is unknown, although some populations have noted frequencies as few as 1 case per 1.7 million people.

<span class="mw-page-title-main">Sphenoid wing meningioma</span> Benign brain tumor

A sphenoid wing meningioma is a benign brain tumor near the sphenoid bone.

<span class="mw-page-title-main">Schwannoma</span> Medical condition

A schwannoma is a usually benign nerve sheath tumor composed of Schwann cells, which normally produce the insulating myelin sheath covering peripheral nerves.

The auditory brainstem response (ABR), also called brainstem evoked response audiometry (BERA), is an auditory evoked potential extracted from ongoing electrical activity in the brain and recorded via electrodes placed on the scalp. The measured recording is a series of six to seven vertex positive waves of which I through V are evaluated. These waves, labeled with Roman numerals in Jewett and Williston convention, occur in the first 10 milliseconds after onset of an auditory stimulus. The ABR is considered an exogenous response because it is dependent upon external factors.

The translabyrinthine approach is a surgical approach to treating serious disorders of the cerebellopontine angle, (CPA), which is the most common location of posterior fossa tumors. especially acoustic neuroma. In this approach, the semicircular canals and vestibule, including the utricle and the saccule of the inner ear are removed, causing complete hearing loss in the operated ear. The procedure is typically performed by a team of surgeons, including a neurotologist as well as a neurosurgeon.

<span class="mw-page-title-main">Jugular foramen syndrome</span> Medical condition

Jugular foramen syndrome, or Vernet's syndrome, is characterized by paresis of the glossopharyngeal, vagal, and accessory nerves.

Neurotology or neuro-otology is a subspecialty of otolaryngology—head and neck surgery, also known as ENT medicine. Neuro-otology is closely related to otology, clinical neurology and neurosurgery.

Neuro-oncology is the study of brain and spinal cord neoplasms, many of which are very dangerous and life-threatening. Among the malignant brain cancers, gliomas of the brainstem and pons, glioblastoma multiforme, and high-grade astrocytoma/oligodendroglioma are among the worst. In these cases, untreated survival usually amounts to only a few months, and survival with current radiation and chemotherapy treatments may extend that time from around a year to a year and a half, possibly two or more, depending on the patient's condition, immune function, treatments used, and the specific type of malignant brain neoplasm. Surgery may in some cases be curative, but, as a general rule, malignant brain cancers tend to regenerate and emerge from remission easily, especially highly malignant cases. In such cases, the goal is to excise as much of the mass and as much of the tumor margin as possible without endangering vital functions or other important cognitive abilities. The Journal of Neuro-Oncology is the longest continuously published journal in the field and serves as a leading reference to those practicing in the area of neuro-oncology.

Bruns nystagmus is an unusual type of bilateral nystagmus most commonly occurring in patients with cerebellopontine angle tumours. It is caused by the combination of slow, large amplitude nystagmus when looking towards the side of the lesion, and rapid, small amplitude nystagmus when looking away from the side of the lesion. It occurs in 11% of patients with vestibular schwannoma, and occurs mainly in patients with larger tumours. Bruns nystagmus is also associated with an increased incidence of balance disturbance in patients with vestibular schwannoma. It may be caused by the compression of both flocculi, the vestibular part of the cerebellum, and improvement in both the nystagmus and balance problems occur commonly after removal of the tumour.

References

  1. Rolak LA. Neurology Secrets, 4th Ed. Chapter 10, "Cerebellar Disease." Elsevier.
  2. Nedzelski JM (October 1983). "Cerebellopontine angle tumors: bilateral flocculus compression as cause of associated oculomotor abnormalities". Laryngoscope. 93 (10): 1251–60. doi:10.1002/lary.1983.93.10.1251. PMID   6604857. S2CID   27574873.
  3. 1 2 E. Rodríguez-Castro; A. Fernández-Lebrero; I.A. López-Dequidt; X. Rodríguez-Osorio; F.J. López-González; J.M. Suárez-Peñaranda; M. Arias (1 October 2015). "[Hypertrophic pachymeningitis secondary to IgG4-related disease: case report and review of the literature]". Revista de Neurología (in Spanish). 61 (7): 308–312. PMID   26411275.