Desocodeine

Last updated
Desocodeine
Desocodeine.svg
Names
IUPAC name
3-Methoxy-17-methyl-4,5α-epoxymorphinan
Systematic IUPAC name
(4R,4aR,7aS,12bS)-9-Methoxy-3-methyl-2,3,4,4a,5,6,7,7a-octahydro-1H-4,12-methano[1]benzofuro[3,2-e]isoquinoline
Other names
Dihydrodeoxycodeine
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/C18H23NO2/c1-19-9-8-18-12-4-3-5-15(18)21-17-14(20-2)7-6-11(16(17)18)10-13(12)19/h6-7,12-13,15H,3-5,8-10H2,1-2H3/t12-,13+,15-,18+/m0/s1
    Key: ZJWPQUSUXBOTPF-SCGCMHLBSA-N
  • InChI=1/C18H23NO2/c1-19-9-8-18-12-4-3-5-15(18)21-17-14(20-2)7-6-11(16(17)18)10-13(12)19/h6-7,12-13,15H,3-5,8-10H2,1-2H3/t12-,13+,15-,18+/m0/s1
    Key: ZJWPQUSUXBOTPF-SCGCMHLBBV
  • O(c2c1O[C@@H]5[C@@]34c1c(cc2)C[C@@H](N(CC3)C)[C@@H]4CCC5)C
Properties
C18H23NO2
Molar mass 285.387 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Desocodeine is a potent semi-synthetic opioid which is the penultimate intermediate in the manufacture of desomorphine from codeine. [1] [2] Desocodeine is a potent analgesic, being as potent as morphine.It is partially metabolized into desomorphine, among others, after parenteral and oral administration. [3] [4]

Since 1936, desocodeine has been classified in the US as a Schedule I controlled substance under the Controlled Substances Act, indicating that the FDA has determined that there are no legal medicinal uses for it. [5]

In Canada, desocodeine is classified as a Schedule I drug under the Controlled Drugs and Substances Act.


Synthesis of desomorphine from codeine Synthesis of Desomorphine from Codein.svg
Synthesis of desomorphine from codeine

Related Research Articles

<span class="mw-page-title-main">Hydrocodone</span> Opioid drug used in pain relief

Hydrocodone, also known as dihydrocodeinone, is a semisynthetic opioid used to treat pain and as a cough suppressant. It is taken by mouth. Typically it is dispensed as the combination acetaminophen/hydrocodone or ibuprofen/hydrocodone for pain severe enough to require an opioid and in combination with homatropine methylbromide to relieve cough. It is also available by itself in a long-acting form under the brand name Zohydro ER, among others, to treat severe pain of a prolonged duration. Hydrocodone is a controlled drug, in the United States a Schedule II Controlled Substance.

<span class="mw-page-title-main">Morphine</span> Pain medication of the opiate family

Morphine is a strong opiate that is found naturally in opium, a dark brown resin produced by drying the latex of opium poppies. It is mainly used as an analgesic. There are numerous methods used to administer morphine: oral; sublingual; via inhalation; injection into a muscle, injection under the skin, or injection into the spinal cord area; transdermal; or via rectal suppository. It acts directly on the central nervous system (CNS) to induce analgesia and alter perception and emotional response to pain. Physical and psychological dependence and tolerance may develop with repeated administration. It can be taken for both acute pain and chronic pain and is frequently used for pain from myocardial infarction, kidney stones, and during labor. Its maximum effect is reached after about 20 minutes when administered intravenously and 60 minutes when administered by mouth, while the duration of its effect is 3–7 hours. Long-acting formulations of morphine are available as MS-Contin, Kadian, and other brand names as well as generically.

<span class="mw-page-title-main">Thebaine</span> Opiate alkaloid constituent of opium

Thebaine (paramorphine), also known as codeine methyl enol ether, is an opiate alkaloid, its name coming from the Greek Θῆβαι, Thēbai (Thebes), an ancient city in Upper Egypt. A minor constituent of opium, thebaine is chemically similar to both morphine and codeine, but has stimulatory rather than depressant effects. At high doses, it causes convulsions similar to strychnine poisoning. The synthetic enantiomer (+)-thebaine does show analgesic effects apparently mediated through opioid receptors, unlike the inactive natural enantiomer (−)-thebaine. While thebaine is not used therapeutically, it is the main alkaloid extracted from Papaver bracteatum and can be converted industrially into a variety of compounds, including hydrocodone, hydromorphone, oxycodone, oxymorphone, nalbuphine, naloxone, naltrexone, buprenorphine, butorphanol and etorphine.

<span class="mw-page-title-main">Narcotic</span> Chemical substance with psycho-active properties

The term narcotic originally referred medically to any psychoactive compound with numbing or paralyzing properties. In the United States, it has since become associated with opiates and opioids, commonly morphine and heroin, as well as derivatives of many of the compounds found within raw opium latex. The primary three are morphine, codeine, and thebaine.

<span class="mw-page-title-main">Etorphine</span> Semi-synthetic opioid

Etorphine (M99) is a semi-synthetic opioid possessing an analgesic potency approximately 10,000–30,000 times that of morphine. It was first prepared in 1960 from oripavine, which does not generally occur in opium poppy extract but rather the related plants Papaver orientale and Papaver bracteatum. It was later reproduced in 1963 by a research group at MacFarlan Smith in Gorgie, Edinburgh, led by Kenneth Bentley. It can also be produced from thebaine.

<span class="mw-page-title-main">Nalbuphine</span> Opioid analgesic

Nalbuphine, sold under the brand names Nubain among others, is an opioid analgesic which is used in the treatment of pain. It is given by injection into a vein, muscle, or fat.

<span class="mw-page-title-main">Lefetamine</span> Chemical compound

Lefetamine (Santenol) is a drug which is a stimulant and also an analgesic with effects comparable to codeine.

<span class="mw-page-title-main">Codeine</span> Opiate and prodrug of morphine used to treat pain

Codeine is an opiate and prodrug of morphine mainly used to treat pain, coughing, and diarrhea. It is also commonly used as a recreational drug. It is found naturally in the sap of the opium poppy, Papaver somniferum. It is typically used to treat mild to moderate degrees of pain. Greater benefit may occur when combined with paracetamol (acetaminophen) or a nonsteroidal anti-inflammatory drug (NSAID) such as aspirin or ibuprofen. Evidence does not support its use for acute cough suppression in children or adults. In Europe, it is not recommended as a cough medicine in those under 12 years of age. It is generally taken by mouth. It typically starts working after half an hour, with maximum effect at two hours. Its effects last for about four to six hours. Codeine exhibits abuse potential similar to other opioid medications, including a risk of habituation and overdose.

<span class="mw-page-title-main">Oripavine</span> Chemical compound

Oripavine is an opioid and the major metabolite of thebaine. It is the parent compound from which a series of semi-synthetic opioids are derived, which includes the compounds etorphine and buprenorphine. Although its analgesic potency is comparable to morphine, it is not used clinically due to its severe toxicity and low therapeutic index. Due to its use in manufacture of strong opioids, oripavine is a controlled substance in some jurisdictions.

<span class="mw-page-title-main">Heterocodeine</span> Chemical compound

Heterocodeine (6-methoxymorphine) is an opiate derivative, the 6-methyl ether of morphine, and a structural isomer of codeine; it is called "hetero-" because it is the reverse isomer of codeine. Heterocodeine was first synthesised in 1932 and first patented in 1935. It can be made from morphine by selective methylation. Codeine is the natural mono-methyl ether, but must be metabolized for activity. In contrast the semi-synthetic mono-methyl ether, heterocodeine is a direct agonist. The 6,7,8,14 tetradehydro 3,6 methyl di-ether of morphine is thebaine.

<span class="mw-page-title-main">Metazocine</span> Opioid analgesic

Metazocine is an opioid analgesic related to pentazocine. While metazocine has significant analgesic effects, mediated through a mixed agonist–antagonist action at the mu opioid receptor, its clinical use is limited by dysphoric and hallucinogenic effects which are most likely caused by activity at kappa opioid receptors and/or sigma receptors.

<span class="mw-page-title-main">Phenazocine</span> Opioid analgesic

Phenazocine is an opioid analgesic drug, which is related to pentazocine and has a similar profile of effects.

<span class="mw-page-title-main">Desomorphine</span> Semi-synthetic opioid, morphine analogue

Desomorphine is a semi-synthetic opioid commercialized by Roche, with powerful, fast-acting effects, such as sedation and analgesia. It was first discovered and patented by a German team working for Knoll in 1920 but was not generally recognized. It was later synthesized in 1932 by Lyndon Frederick Small. Small also successfully patented it in 1934 in the United States. Desomorphine was used in Switzerland under the brand name Permonid and was described as having a fast onset and a short duration of action, with relatively little nausea compared to equivalent doses of morphine. Dose for dose it is eight to ten times more potent than morphine.

<span class="mw-page-title-main">Normorphine</span> Chemical compound

Normorphine is an opiate analogue, the N-demethylated derivative of morphine, that was first described in the 1950s when a large group of N-substituted morphine analogues were characterized for activity. The compound has relatively little opioid activity in its own right, but is a useful intermediate which can be used to produce both opioid antagonists such as nalorphine, and also potent opioid agonists such as N-phenethylnormorphine. with its formation from morphine catalyzed by the liver enzymes CYP3A4 and CYP2C8.

<span class="mw-page-title-main">Norcodeine</span> Chemical compound

Norcodeine is an opiate analogue that is the N-demethylated derivative of codeine. It has relatively little opioid activity in its own right, but is formed as a metabolite of codeine following ingestion.

<span class="mw-page-title-main">5-Methyl-MDA</span> Chemical compound

5-Methyl-3,4-methylenedioxyamphetamine (5-Methyl-MDA) is an entactogen and psychedelic designer drug of the amphetamine class. It is a ring-methylated homologue of MDA and a structural isomer of MDMA.

<span class="mw-page-title-main">Opiate</span> Substance derived from opium

An opiate is an alkaloid substance derived from opium It has a different meaning from the similar term opioid, used to designate all substances, both natural and synthetic, that bind to opioid receptors in the brain. Opiates are alkaloid compounds naturally found in the opium poppy plant Papaver somniferum. The psychoactive compounds found in the opium plant include morphine, codeine, and thebaine. Opiates have long been used for a variety of medical conditions with evidence of opiate trade and use for pain relief as early as the eighth century AD. Most opiates are considered drugs with moderate to high abuse potential and are listed on various "Substance-Control Schedules" under the Uniform Controlled Substances Act of the United States of America.

<span class="mw-page-title-main">MT-45</span> Chemical compound

MT-45 (IC-6) is an opioid analgesic drug invented in the 1970s by Dainippon Pharmaceutical Co. It is chemically a 1-substituted-4-(1,2-diphenylethyl) piperazine derivative, which is structurally unrelated to most other opioid drugs. Racemic MT-45 has around 80% the potency of morphine, with almost all opioid activity residing in the (S) enantiomer. It has been used as a lead compound from which a large family of potent opioid drugs have been developed, including full agonists, partial agonists, and antagonists at the three main opioid receptor subtypes. Fluorinated derivatives of MT-45 such as 2F-MT-45 are significantly more potent as μ-opioid receptor agonists, and one of its main metabolites 1,2-diphenylethylpiperazine also blocks NMDA receptors.

<span class="mw-page-title-main">AB-PINACA</span> Chemical compound

AB-PINACA is a compound that was first identified as a component of synthetic cannabis products in Japan in 2012.

References

  1. PubChem. "Desocodeine". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-15.
  2. "Desocodeine | C18H23NO2 | ChemSpider". www.chemspider.com. Retrieved 2022-11-15.
  3. Eddy NB (1 November 1935). "STUDIES OF MORPHINE, CODEINE AND THEIR DERIVATIVES X. DESOXYMORPHINE-C, DESOXYCODEINE-C AND THEIR HYDROGENATED DERIVATIVES". Journal of Pharmacology and Experimental Therapeutics. 55 (1): 257–267. S2CID   93217792.
  4. Himmelsbach Clifton K (1939). "STUDIES OF CERTAIN ADDICTION CHARACTERISTICS OF (a) DIHYDROMORPHINE ("PARAMORPHAN"), (b) DIHYDRODESOXYMORPHINE-D ("DESOMORPHINE"), (c) DIHYDRODESOXYCODEINE-D ("DESOCODEINE"), AND (d) METHYLDIHYDROMORPHINONE ("METOPON")". Journal of Pharmacology and Experimental Therapeutics. 67: 239–249. S2CID   102042333.{{cite journal}}: CS1 maint: date and year (link)
  5. "DEA Diversion Control Division". Archived from the original on 4 March 2016. Retrieved 4 May 2015.