Etching (microfabrication)

Last updated
Etching tanks used to perform Piranha, hydrofluoric acid or RCA clean on 4-inch wafer batches at LAAS technological facility in Toulouse, France Wet etching tanks at LAAS 0465.jpg
Etching tanks used to perform Piranha, hydrofluoric acid or RCA clean on 4-inch wafer batches at LAAS technological facility in Toulouse, France

Etching is used in microfabrication to chemically remove layers from the surface of a wafer during manufacturing. Etching is a critically important process module in fabrication, and every wafer undergoes many etching steps before it is complete.

Contents

For many etch steps, part of the wafer is protected from the etchant by a "masking" material which resists etching. In some cases, the masking material is a photoresist which has been patterned using photolithography. Other situations require a more durable mask, such as silicon nitride.

Etching media and technology

The two fundamental types of etchants are liquid-phase ("wet") and plasma-phase ("dry"). Each of these exists in several varieties.

Etching, simplified animation of etchant action on a copper sheet with mask.gif

Wet etching

Radiation hardened die of the 1886VE10 microcontroller prior to metalization etching 1886VE10-HD.jpg
Radiation hardened die of the 1886VE10 microcontroller prior to metalization etching
Radiation hardened die of the 1886VE10 microcontroller after a metalization etching process has been used 1886VE10-Si-HD.jpg
Radiation hardened die of the 1886VE10 microcontroller after a metalization etching process has been used

The first etching processes used liquid-phase ("wet") etchants. This process is now largely outdated but was used up until the late 1980s when it was superseded by dry plasma etching. [1] :147 The wafer can be immersed in a bath of etchant, which must be agitated to achieve good process control. For instance, buffered hydrofluoric acid (BHF) is used commonly to etch silicon dioxide over a silicon substrate.

Different specialized etchants can be used to characterize the surface etched.

Wet etchants are usually isotropic, which leads to a large bias when etching thick films. They also require the disposal of large amounts of toxic waste. For these reasons, they are seldom used in state-of-the-art processes. However, the photographic developer used for photoresist resembles wet etching.

As an alternative to immersion, single wafer machines use the Bernoulli principle to employ a gas (usually, pure nitrogen) to cushion and protect one side of the wafer while etchant is applied to the other side. It can be done to either the front side or back side. The etch chemistry is dispensed on the top side when in the machine and the bottom side is not affected. This etching method is particularly effective just before "backend" processing (BEOL), where wafers are normally very much thinner after wafer backgrinding, and very sensitive to thermal or mechanical stress. Etching a thin layer of even a few micrometres will remove microcracks produced during backgrinding resulting in the wafer having dramatically increased strength and flexibility without breaking.

Anisotropic wet etching (Orientation dependent etching)

An anisotropic wet etch on a silicon wafer creates a cavity with a trapezoidal cross-section. The bottom of the cavity is a {100} plane (see Miller indices), and the sides are {111} planes. The blue material is an etch mask, and the green material is silicon. Anisotropic wet etching.svg
An anisotropic wet etch on a silicon wafer creates a cavity with a trapezoidal cross-section. The bottom of the cavity is a {100} plane (see Miller indices), and the sides are {111} planes. The blue material is an etch mask, and the green material is silicon.

Some wet etchants etch crystalline materials at very different rates depending upon which crystal face is exposed. In single-crystal materials (e.g. silicon wafers), this effect can allow very high anisotropy, as shown in the figure. The term "crystallographic etching" is synonymous with "anisotropic etching along crystal planes".

However, for some non-crystal materials like glass, there are unconventional ways to etch in an anisotropic manner. [2] The authors employ multistream laminar flow that contains etching non-etching solutions to fabricate a glass groove. The etching solution at the center is flanked by non-etching solutions and the area contacting etching solutions is limited by the surrounding non-etching solutions. The etching direction is thereby mainly vertical to the glass surface. The scanning electron microscopy (SEM) images demonstrate the breaking of the conventional theoretical limit of aspect ratio (width/height=0.5) and contribute a two-fold improvement (width/height=1).

Several anisotropic wet etchants are available for silicon, all of them hot aqueous caustics. For instance, potassium hydroxide (KOH) displays an etch rate selectivity 400 times higher in <100> crystal directions than in <111> directions. EDP (an aqueous solution of ethylene diamine and pyrocatechol), displays a <100>/<111> selectivity of 17X, does not etch silicon dioxide as KOH does, and also displays high selectivity between lightly doped and heavily boron-doped (p-type) silicon. Use of these etchants on wafers that already contain CMOS integrated circuits requires protecting the circuitry. KOH may introduce mobile potassium ions into silicon dioxide, and EDP is highly corrosive and carcinogenic, so care is required in their use. Tetramethylammonium hydroxide (TMAH) presents a safer alternative than EDP, with a 37X selectivity between {100} and {111} planes in silicon.

Etching a (100) silicon surface through a rectangular hole in a masking material, like a hole in a layer of silicon nitride, creates a pit with flat sloping {111}-oriented sidewalls and a flat (100)-oriented bottom. The {111}-oriented sidewalls have an angle to the surface of the wafer of:

If the etching is continued "to completion", i.e. until the flat bottom disappears, the pit becomes a trench with a V-shaped cross-section. If the original rectangle was a perfect square, the pit when etched to completion displays a pyramidal shape.

The undercut, δ, under an edge of the masking material is given by:

,

where Rxxx is the etch rate in the <xxx> direction, T is the etch time, D is the etch depth and S is the anisotropy of the material and etchant.

Different etchants have different anisotropies. Below is a table of common anisotropic etchants for silicon:

EtchantOperating temp (°C)R100 (μm/min)S=R100/R111Mask materials
Ethylenediamine pyrocatechol
(EDP) [3]
1100.4717 SiO2, Si3N4, Au, Cr, Ag, Cu
Potassium hydroxide/Isopropyl alcohol
(KOH/IPA)
501.0400Si3N4, SiO2 (etches at 2.8 nm/min)
Tetramethylammonium hydroxide
(TMAH) [4]
800.637Si3N4, SiO2

Plasma etching

Simplified illustration of dry etching using positive photoresist during a photolithography process in semiconductor microfabrication. Note: Not to scale. Photolithography etching process.svg
Simplified illustration of dry etching using positive photoresist during a photolithography process in semiconductor microfabrication. Note: Not to scale.

Modern very large scale integration (VLSI) processes avoid wet etching, and use plasma etching instead. Plasma etchers can operate in several modes by adjusting the parameters of the plasma. Ordinary plasma etching operates between 0.1 and 5 Torr. (This unit of pressure, commonly used in vacuum engineering, equals approximately 133.3 pascals.) The plasma produces energetic free radicals, neutrally charged, that react at the surface of the wafer. Since neutral particles attack the wafer from all angles, this process is isotropic.

Plasma etching can be isotropic, i.e., exhibiting a lateral undercut rate on a patterned surface approximately the same as its downward etch rate, or can be anisotropic, i.e., exhibiting a smaller lateral undercut rate than its downward etch rate. Such anisotropy is maximized in deep reactive ion etching (DRIE). The use of the term anisotropy for plasma etching should not be conflated with the use of the same term when referring to orientation-dependent etching.

The source gas for the plasma usually contains small molecules rich in chlorine or fluorine. For instance, carbon tetrachloride (CCl4) etches silicon and aluminium, and trifluoromethane etches silicon dioxide and silicon nitride. A plasma containing oxygen is used to oxidize ("ash") photoresist and facilitate its removal.

Ion milling, or sputter etching, uses lower pressures, often as low as 10−4 Torr (10 mPa). It bombards the wafer with energetic ions of noble gases, often Ar +, which knock atoms from the substrate by transferring momentum. Because the etching is performed by ions, which approach the wafer approximately from one direction, this process is highly anisotropic. On the other hand, it tends to display poor selectivity. Reactive-ion etching (RIE) operates under conditions intermediate between sputter and plasma etching (between 10−3 and 10−1 Torr). Deep reactive-ion etching (DRIE) modifies the RIE technique to produce deep, narrow features.

Orientation-Dependent Etching

By increasing the temperature, the etch rate increases, but the selectivity decreases. There is a trade-off between etch rate and etch selectivity.

Figures of merit

If the etch is intended to make a cavity in a material, the depth of the cavity may be controlled approximately using the etching time and the known etch rate. More often, though, etching must entirely remove the top layer of a multilayer structure, without damaging the underlying or masking layers. The etching system's ability to do this depends on the ratio of etch rates in the two materials (selectivity).

Some etches undercut the masking layer and form cavities with sloping sidewalls. The distance of undercutting is called bias. Etchants with large bias are called isotropic , because they erode the substrate equally in all directions. Modern processes greatly prefer anisotropic etches, because they produce sharp, well-controlled features.

Selectivity Etch selectivity.png Blue: layer to remain
  1. A poorly selective etch removes the top layer but also attacks the underlying material.
  2. A highly selective etch leaves the underlying material unharmed.
Isotropy Etch anisotropy.png Red: masking layer; yellow: layer to be removed
  1. A perfectly isotropic etch produces round sidewalls.
  2. A perfectly anisotropic etch produces vertical sidewalls.


Common etch processes used in microfabrication

Etchants for common microfabrication materials
Material to be etchedWet etchantsPlasma etchants
Aluminium (Al)80% phosphoric acid (H3PO4) + 5% acetic acid
+ 5% nitric acid (HNO3) + 10% water (H2O) at 35–45 °C [5]
Cl2, CCl4, SiCl4, BCl3 [6]
Indium tin oxide [ITO] (In2O3:SnO2) Hydrochloric acid (HCl) + nitric acid (HNO3) + water (H2O) (1:0.1:1) at 40 °C [7]
Chromium (Cr)

Gallium Arsenide (GaAs)

Gold (Au)
Molybdenum (Mo) CF4 [6]
Organic residues and photoresist Piranha etch: sulfuric acid (H2SO4) + hydrogen peroxide (H2O2) O2 (ashing)
Platinum (Pt)Aqua regia
Silicon (Si)
Silicon dioxide (SiO2)CF4, SF6, NF3 [6]
Silicon nitride (Si3N4)
  • 85% Phosphoric acid (H3PO4) at 180 °C [5] (Requires SiO2 etch mask)
CF4, SF6, NF3, [6] CHF3
Tantalum (Ta)CF4 [6]
Titanium (Ti)Hydrofluoric acid (HF) [5] BCl3 [9]
Titanium nitride (TiN)
  • Nitric acid (HNO3) + hydrofluoric acid (HF)
  • SC1
  • Buffered HF (bHF)
Tungsten (W)
  • Nitric acid (HNO3) + hydrofluoric acid (HF)
  • Hydrogen Peroxide (H2O2)

See also

Related Research Articles

<span class="mw-page-title-main">Anisotropy</span> In geometry, property of being directionally dependent

Anisotropy is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example many materials exhibit very different properties when measured along different axes: physical or mechanical properties.

<span class="mw-page-title-main">MEMS</span> Very small devices that incorporate moving components

MEMS is the technology of microscopic devices incorporating both electronic and moving parts. MEMS are made up of components between 1 and 100 micrometres in size, and MEMS devices generally range in size from 20 micrometres to a millimetre, although components arranged in arrays can be more than 1000 mm2. They usually consist of a central unit that processes data and several components that interact with the surroundings.

In integrated circuit manufacturing, photolithography or optical lithography is a general term used for techniques that use light to produce minutely patterned thin films of suitable materials over a substrate, such as a silicon wafer, to protect selected areas of it during subsequent etching, deposition, or implantation operations. Typically, ultraviolet light is used to transfer a geometric design from an optical mask to a light-sensitive chemical (photoresist) coated on the substrate. The photoresist either breaks down or hardens where it is exposed to light. The patterned film is then created by removing the softer parts of the coating with appropriate solvents, also known in this case as developers.

Isotropic etching is a method commonly used in semiconductors to remove material from a substrate via a chemical process using an etchant substance. The etchant may be in liquid-, gas- or plasma-phase, although liquid etchants such as buffered hydrofluoric acid (BHF) for silicon dioxide etching are more often used. Unlike anisotropic etching, isotropic etching does not etch in a single direction, but rather etches in multiple directions within the substrate. Any horizontal component of the etch direction may therefore result in undercutting of patterned areas, and significant changes to device characteristics. Isotropic etching may occur unavoidably, or it may be desirable for process reasons.

<span class="mw-page-title-main">Reactive-ion etching</span> Method used to relatively precisely remove material in a controlled and fine fashion

Reactive-ion etching (RIE) is an etching technology used in microfabrication. RIE is a type of dry etching which has different characteristics than wet etching. RIE uses chemically reactive plasma to remove material deposited on wafers. The plasma is generated under low pressure (vacuum) by an electromagnetic field. High-energy ions from the plasma attack the wafer surface and react with it.

Dry etching refers to the removal of material, typically a masked pattern of semiconductor material, by exposing the material to a bombardment of ions that dislodge portions of the material from the exposed surface. A common type of dry etching is reactive-ion etching. Unlike with many of the wet chemical etchants used in wet etching, the dry etching process typically etches directionally or anisotropically.

Surface micromachining builds microstructures by deposition and etching structural layers over a substrate. This is different from Bulk micromachining, in which a silicon substrate wafer is selectively etched to produce structures.

Bulk micromachining is a process used to produce micromachinery or microelectromechanical systems (MEMS).

Deep reactive-ion etching (DRIE) is a highly anisotropic etch process used to create deep penetration, steep-sided holes and trenches in wafers/substrates, typically with high aspect ratios. It was developed for microelectromechanical systems (MEMS), which require these features, but is also used to excavate trenches for high-density capacitors for DRAM and more recently for creating through silicon vias (TSVs) in advanced 3D wafer level packaging technology. In DRIE, the substrate is placed inside a reactor, and several gases are introduced. A plasma is struck in the gas mixture which breaks the gas molecules into ions. The ions accelerated towards, and react with the surface of the material being etched, forming another gaseous element. This is known as the chemical part of the reactive ion etching. There is also a physical part, if ions have enough energy, they can knock atoms out of the material to be etched without chemical reaction.

Plasma etching is a form of plasma processing used to fabricate integrated circuits. It involves a high-speed stream of glow discharge (plasma) of an appropriate gas mixture being shot at a sample. The plasma source, known as etch species, can be either charged (ions) or neutral. During the process, the plasma generates volatile etch products at room temperature from the chemical reactions between the elements of the material etched and the reactive species generated by the plasma. Eventually the atoms of the shot element embed themselves at or just below the surface of the target, thus modifying the physical properties of the target.

<span class="mw-page-title-main">Tetramethylammonium hydroxide</span> Chemical compound

Tetramethylammonium hydroxide (TMAH or TMAOH) is a quaternary ammonium salt with molecular formula N(CH3)4+ OH. It is commonly encountered in form of concentrated solutions in water or methanol. TMAH in solid state and its aqueous solutions are all colorless, but may be yellowish if impure. Although TMAH has virtually no odor when pure, samples often have a strong fishy smell due to presence of trimethylamine which is a common impurity. TMAH has several diverse industrial and research applications.

Advanced silicon etching (ASE) is a deep reactive-ion etching (DRIE) technique to etch deep and high aspect ratio structures in silicon. ASE was created by Surface Technology Systems Plc (STS) in 1994 in the UK. STS has continued to develop this process with faster etch rates. STS developed and first implemented the switched process, originally invented by Dr. Larmer in Bosch, Stuttgart. ASE consists in combining the faster etch rates achieved in an isotropic Si etch (usually making use of an SF6 plasma) with a deposition or passivation process (usually utilising a C4F8 plasma condensation process) by alternating the two process steps. This approach achieves the fastest etch rates while maintaining the ability to etch anisotropically, typically vertically in Microelectromechanical Systems (microelectromechanical systems (MEMS)) applications.

In semiconductor electronics fabrication technology, a self-aligned gate is a transistor manufacturing approach whereby the gate electrode of a MOSFET is used as a mask for the doping of the source and drain regions. This technique ensures that the gate is naturally and precisely aligned to the edges of the source and drain.

A hardmask is a material used in semiconductor processing as an etch mask instead of a polymer or other organic "soft" resist material.

Buffered oxide etch (BOE), also known as buffered HF or BHF, is a wet etchant used in microfabrication. Its primary use is in etching thin films of silicon dioxide (SiO2) or silicon nitride (Si3N4). It is a mixture of a buffering agent, such as ammonium fluoride (NH4F), and hydrofluoric acid (HF). Concentrated HF (typically 49% HF in water) etches silicon dioxide too quickly for good process control and also peels photoresist used in lithographic patterning. Buffered oxide etch is commonly used for more controllable etching.

<span class="mw-page-title-main">Tokyo Electron</span> Japanese semiconductor equipment manufacturer

Tokyo Electron Limited, or TEL, is a Japanese electronics and semiconductor company headquartered in Akasaka, Minato-ku, Tokyo, Japan. The company was founded as Tokyo Electron Laboratories, Inc. in 1963.

<span class="mw-page-title-main">Wright etch</span>

The Wright etch is a preferential etch for revealing defects in <100>- and <111>-oriented, p- and n-type silicon wafers used for making transistors, microprocessors, memories, and other components. Revealing, identifying, and remedying such defects is essential for progress along the path predicted by Moore's law. It was developed by Margaret Wright Jenkins (1936-2018) in 1976 while working in research and development at Motorola Inc. in Phoenix, AZ. It was published in 1977. This etchant reveals clearly defined oxidation-induced stacking faults, dislocations, swirls and striations with minimum surface roughness or extraneous pitting. These defects are known causes of shorts and current leakage in finished semiconductor devices should they fall across isolated junctions. A relatively low etch rate at room temperature provides etch control. The long shelf life of this etchant allows the solution to be stored in large quantities.

<span class="mw-page-title-main">Chemistry of photolithography</span> Overview article

Photolithography is a process in removing select portions of thin films used in microfabrication. Microfabrication is the production of parts on the micro- and nano- scale, typically on the surface of silicon wafers, for the production of integrated circuits, microelectromechanical systems (MEMS), solar cells, and other devices. Photolithography makes this process possible through the combined use of hexamethyldisilazane (HMDS), photoresist, spin coating, photomask, an exposure system and other various chemicals. By carefully manipulating these factors it is possible to create nearly any geometry microstructure on the surface of a silicon wafer. The chemical interaction between all the different components and the surface of the silicon wafer makes photolithography an interesting chemistry problem. Current engineering has been able to create features on the surface of silicon wafers between 1 and 100 μm.

<span class="mw-page-title-main">Metal assisted chemical etching</span>

Metal Assisted Chemical Etching is the process of wet chemical etching of semiconductors with the use of a metal catalyst, usually deposited on the surface of a semiconductor in the form of a thin film or nanoparticles. The semiconductor, covered with the metal is then immersed in an etching solution containing and oxidizing agent and hydrofluoric acid. The metal on the surface catalyzes the reduction of the oxidizing agent and therefore in turn also the dissolution of silicon. In the majority of the conducted research this phenomenon of increased dissolution rate is also spatially confined, such that it is increased in close proximity to a metal particle at the surface. Eventually this leads to the formation of straight pores that are etched into the semiconductor. This means that a pre-defined pattern of the metal on the surface can be directly transferred to a semiconductor substrate.

Vapor etching refers to a process used in the fabrication of Microelectromechanical systems (MEMS) and Nanoelectromechanical systems (NEMS). Sacrificial layers are isotropically etched using gaseous acids such as Hydrogen fluoride and Xenon difluoride to release the free standing components of the device.

References

Inline references

  1. Shubham, Kumar (2021). Integrated circuit fabrication. Ankaj Gupta. Abingdon, Oxon. ISBN   978-1-000-39644-7. OCLC   1246513110.{{cite book}}: CS1 maint: location missing publisher (link)
  2. X. Mu, et al. Laminar Flow used as "Liquid Etching Mask" in Wet Chemical Etching to Generate Glass Microstructures with an Improved Aspect Ratio. Lab on a Chip, 2009, 9: 1994-1996.
  3. Finne, R.M.; Klein, D.L. (1967). "A Water-Amine-Complexing Agent System for Etching Silicon". Journal of the Electrochemical Society. 114 (9): 965–70. Bibcode:1967JElS..114..965F. doi:10.1149/1.2426793.
  4. Shikida, M.; Sato, K.; Tokoro, K.; Uchikawa, D. (2000). "Surface morphology of anisotropically etched single-crystal silicon". Journal of Micromechanics and Microengineering. 10 (4): 522. Bibcode:2000JMiMi..10..522S. doi:10.1088/0960-1317/10/4/306. S2CID   250804151.
  5. 1 2 3 4 5 6 Wolf, S.; R.N. Tauber (1986). Silicon Processing for the VLSI Era: Volume 1 - Process Technology. Lattice Press. pp. 531–534. ISBN   978-0-9616721-3-3.
  6. 1 2 3 4 5 6 7 8 Wolf, S.; R.N. Tauber (1986). Silicon Processing for the VLSI Era: Volume 1 - Process Technology. Lattice Press. p. 546. ISBN   978-0-9616721-3-3.
  7. Bahadur, Birendra (1990). Liquid Crystals: Applications and Uses vol.1. World Scientific. p. 183. ISBN   978-981-02-2975-7.
  8. 1 2 Walker, Perrin; William H. Tarn (1991). CRC Handbook of Metal Etchants . CRC-Press. pp.  287–291. ISBN   978-0-8493-3623-2.
  9. Kohler, Michael (1999). Etching in Microsystem Technology. John Wiley & Son Ltd. p. 329. ISBN   978-3-527-29561-6.