Dichlorodifluoromethane

Last updated
Dichlorodifluoromethane
Dichlorodifluoromethane.png
Dichlorodifluoromethane-3D-vdW.png
Names
Preferred IUPAC name
Dichlorodi(fluoro)methane
Other names
  • Dichlorodifluoromethane
  • Carbon dichloride difluoride
  • Dichloro-difluoro-methane
  • Difluorodichloromethane
  • Freon 12
  • R-12
  • CFC-12
  • P-12
  • Propellant 12
  • Halon 122
  • Arcton 6
  • Arcton 12
  • E940
  • Fluorocarbon 12
  • Genetron 12
  • Refrigerant 12
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.000.813 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 200-893-9
E number E940 (glazing agents, ...)
KEGG
PubChem CID
RTECS number
  • PA8200000
UNII
UN number 1028
  • InChI=1S/CCl2F2/c2-1(3,4)5 Yes check.svgY
    Key: PXBRQCKWGAHEHS-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/CCl2F2/c2-1(3,4)5
    Key: PXBRQCKWGAHEHS-UHFFFAOYAX
  • ClC(Cl)(F)F
Properties
CCl2F2
Molar mass 120.91 g·mol−1
AppearanceColorless gas
Odor ether-like at very high concentrations
Density 1.486 g/cm3 (−29.8 °C (−21.6 °F))
Melting point −157.7 °C (−251.9 °F; 115.5 K)
Boiling point −29.8 °C (−21.6 °F; 243.3 K)
0.286 g/L at 20 °C (68 °F)
Solubility in alcohol, ether, benzene, acetic acidSoluble
log P 2.16
Vapor pressure 568 kPa (20 °C (68 °F))
0.0025 molkg−1bar−1
−52.2·10−6 cm3/mol
Thermal conductivity 0.0097 W/(m·K) (300 K) [1]
Structure
Tetrahedral
0.51 D [2]
Hazards
GHS labelling:
GHS-pictogram-bottle.svg GHS-pictogram-exclam.svg
Warning
H280, H336, H420
P261, P271, P304+P340, P319, P403+P233, P405, P410+P403, P501, P502
NFPA 704 (fire diamond)
NFPA 704.svgHealth 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
0
0
0
Flash point Non-flammable [3]
Lethal dose or concentration (LD, LC):
760,000 ppm (mouse, 30 min)
800,000 ppm (rabbit, 30 min)
800,000 ppm (guinea pig, 30 min)
600,000 ppm (rat, 2 h) [4]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 1000 ppm (4950 mg/m3) [3]
REL (Recommended)
TWA 1000 ppm (4950 mg/m3) [3]
IDLH (Immediate danger)
15000 ppm [3]
Supplementary data page
Dichlorodifluoromethane (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Dichlorodifluoromethane (R-12) is a colorless gas usually sold under the brand name Freon-12, and a chlorofluorocarbon halomethane (CFC) used as a refrigerant and aerosol spray propellant. In compliance with the Montreal Protocol, its manufacture was banned in developed countries (non-article 5 countries) in 1996, and in developing countries (Article 5 countries) in 2010 out of concerns about its damaging effect on the ozone layer. [5] Its only allowed usage is as a fire retardant in submarines and aircraft. It is soluble in many organic solvents. R-12 cylinders are colored white.

Contents

Preparation

It can be prepared by reacting carbon tetrachloride with hydrogen fluoride in the presence of a catalytic amount of antimony pentachloride:

CCl4 + 2HF CCl2F2 + 2HCl

This reaction can also produce trichlorofluoromethane (CCl3F), chlorotrifluoromethane (CClF3) and tetrafluoromethane (CF4). [6]

History

Charles Kettering, vice president of General Motors Research Corporation, was seeking a refrigerant replacement that would be colorless, odorless, tasteless, nontoxic, and nonflammable. He assembled a team that included Thomas Midgley, Jr., Albert Leon Henne, and Robert McNary. From 1930 to 1935, they developed dichlorodifluoromethane (CCl2F2 or R12), trichlorofluoromethane (CCl3F or R11), chlorodifluoromethane (CHClF2 or R22), trichlorotrifluoroethane (CCl2FCClF2 or R113), and dichlorotetrafluoroethane (CClF2CClF2 or R114), through Kinetic Chemicals which was a joint venture between DuPont and General Motors. [7]

Use as an aerosol

The use of chlorofluorocarbons as aerosols in medicine, such as USP-approved salbutamol, has been phased out by the U.S. Food and Drug Administration. A different propellant known as hydrofluoroalkane, or HFA, which was not known to harm the environment, was chosen to replace it. [8]

Retrofitting

R-12 was used in most refrigeration and vehicle air conditioning applications prior to 1994 before being replaced by 1,1,1,2-tetrafluoroethane (R-134a), which has an insignificant ozone depletion potential. Automobile manufacturers started using R-134a instead of R-12 in 1992–1994. When older units leak or require repair involving removal of the refrigerant, retrofitment to a refrigerant other than R-12 (most commonly R-134a which has a global warming potential 3,400 times that of carbon dioxide) is required in some jurisdictions. The United States does not require automobile owners to retrofit their systems; however, taxes on ozone-depleting chemicals coupled with the relative scarcity of the original refrigerants on the open market make retrofitting the only economical option. Retrofitment requires a system flush and a new filter/dryer or accumulator, and may also involve the installation of new seals and/or hoses made of materials compatible with the refrigerant being installed. Mineral oil used with R-12 is not compatible with R-134a. Some oils designed for conversion to R-134a are advertised as compatible with residual R-12 mineral oil. Another replacement for R-12 is the highly flammable, but truly drop-in HC-12a, whose flammability has led to injuries and deaths in a bus fire in 2006. [9] [10]

Dangers

Aside from its environmental impacts, R12, like most chlorofluoroalkanes, forms phosgene gas when exposed to a naked flame. [11]

Properties

Table of thermal and physical properties of saturated liquid refrigerant 12: [12] [13]

Temperature (°C)Density (kg/m^3)Specific heat (kJ/kg K)Kinematic viscosity (m^2/s)Conductivity (W/m K)Thermal diffusivity (m^2/s)Prandtl NumberBulk modulus (K^-1)
-501546.750.8753.10E-070.0675.01E-016.22.63E-03
-401518.710.88472.79E-070.0695.14E-015.4-
-301489.560.89562.53E-070.0695.26E-014.8-
-201460.570.90732.35E-070.0715.39E-014.4-
-101429.490.92032.21E-070.0735.50E-014-
01397.450.93452.14E-070.0735.57E-013.8-
101364.30.94962.03E-070.0735.60E-013.6-
201330.180.96591.98E-070.0735.60E-013.5-
301295.10.98351.94E-070.0715.60E-013.5-
401257.131.00191.91E-070.0695.55E-013.5-
501215.961.02161.90E-070.0675.45E-013.5-

Related Research Articles

<span class="mw-page-title-main">Ozone depletion</span> Atmospheric phenomenon

Ozone depletion consists of two related events observed since the late 1970s: a steady lowering of about four percent in the total amount of ozone in Earth's atmosphere, and a much larger springtime decrease in stratospheric ozone around Earth's polar regions. The latter phenomenon is referred to as the ozone hole. There are also springtime polar tropospheric ozone depletion events in addition to these stratospheric events.

<span class="mw-page-title-main">Chlorofluorocarbon</span> Class of organic compounds

Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are fully or partly halogenated hydrocarbons that contain carbon (C), hydrogen (H), chlorine (Cl), and fluorine (F), produced as volatile derivatives of methane, ethane, and propane.

Freon is a registered trademark of the Chemours Company and generic descriptor for a number of halocarbon products. They are stable, nonflammable, low toxicity gases or liquids which have generally been used as refrigerants and as aerosol propellants. These include chlorofluorocarbons and hydrofluorocarbons, both of which cause ozone depletion and contribute to global warming. 'Freon' is the brand name for the refrigerants R-12, R-13B1, R-22, R-410A, R-502, and R-503 manufactured by The Chemours Company, and so is not used to label all refrigerants of this type. They emit a strong smell similar to acetone.

<span class="mw-page-title-main">Carbon tetrachloride</span> Chemical compound

Carbon tetrachloride, also known by many other names (such as carbon tet for short and tetrachloromethane, also recognised by the IUPAC) is a chemical compound with the chemical formula CCl4. It is a non-flammable, dense, colourless liquid with a "sweet" chloroform-like odour that can be detected at low levels. It was formerly widely used in fire extinguishers, as a precursor to refrigerants and as a cleaning agent, but has since been phased out because of environmental and safety concerns. Exposure to high concentrations of carbon tetrachloride can affect the central nervous system and degenerate the liver and kidneys. Prolonged exposure can be fatal.

<span class="mw-page-title-main">Aerosol spray dispenser</span> Dispensing system of an aerosol mist

Aerosol spray is a type of dispensing system which creates an aerosol mist of liquid particles. It comprises a can or bottle that contains a payload, and a propellant under pressure. When the container's valve is opened, the payload is forced out of a small opening and emerges as an aerosol or mist.

<span class="mw-page-title-main">Refrigerant</span> Substance in a refrigeration cycle

A refrigerant is a working fluid used in the refrigeration cycle of air conditioning systems and heat pumps where in most cases they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are heavily regulated due to their toxicity, flammability and the contribution of CFC and HCFC refrigerants to ozone depletion and that of HFC refrigerants to climate change.

Difluoromethane, also called difluoromethylene, HFC-32Methylene Fluoride or R-32, is an organic compound of the dihalogenoalkane variety. It has the formula of CH2F2. It is a colorless gas in the ambient atmosphere and is slightly soluble in the water, with a high thermal stability. Due to the low melting and boiling point, (-136.0 °C and -51.6 °C respectively) contact with this compound may result in frostbite. In the United States, the Clean Air Act Section 111 on Volatile Organic Compounds (VOC) has listed difluoromethane as an exception (since 1997) from the definition of VOC due to its low production of tropospheric ozone. Difluoromethane is commonly used in endothermic processes such as refrigeration or air conditioning.

1,1,1,2-Tetrafluoroethane (also known as norflurane (INN), R-134a, Klea 134a,Freon 134a, Forane 134a, Genetron 134a, Green Gas, Florasol 134a, Suva 134a, HFA-134a, or HFC-134a) is a hydrofluorocarbon (HFC) and haloalkane refrigerant with thermodynamic properties similar to R-12 (dichlorodifluoromethane) but with insignificant ozone depletion potential and a lower 100-year global warming potential (1,430, compared to R-12's GWP of 10,900). It has the formula CF3CH2F and a boiling point of −26.3 °C (−15.34 °F) at atmospheric pressure. R-134a cylinders are colored light blue. A phaseout and transition to HFO-1234yf and other refrigerants, with GWPs similar to CO2, began in 2012 within the automotive market.

Trichlorofluoromethane, also called freon-11, CFC-11, or R-11, is a chlorofluorocarbon (CFC). It is a colorless, faintly ethereal, and sweetish-smelling liquid that boils around room temperature. CFC-11 is a Class 1 ozone-depleting substance which damages Earth's protective stratospheric ozone layer.

<span class="mw-page-title-main">Chlorodifluoromethane</span> Chemical propellant and refrigerant

Chlorodifluoromethane or difluoromonochloromethane is a hydrochlorofluorocarbon (HCFC). This colorless gas is better known as HCFC-22, or R-22, or CHClF
2
. It was commonly used as a propellant and refrigerant. These applications were phased out under the Montreal Protocol in developed countries in 2020 due to the compound's ozone depletion potential (ODP) and high global warming potential (GWP), and in developing countries this process will be completed by 2030. R-22 is a versatile intermediate in industrial organofluorine chemistry, e.g. as a precursor to tetrafluoroethylene.

1,2-Dichlorotetrafluoroethane, or R-114, also known as cryofluorane (INN), is a chlorofluorocarbon (CFC) with the molecular formula ClF2CCF2Cl. Its primary use has been as a refrigerant. It is a non-flammable gas with a sweetish, chloroform-like odor with the critical point occurring at 145.6 °C and 3.26 MPa. When pressurized or cooled, it is a colorless liquid. It is listed on the Intergovernmental Panel on Climate Change's list of ozone depleting chemicals, and is classified as a Montreal Protocol Class I, group 1 ozone depleting substance.

Chlorotrifluoromethane, R-13, CFC-13, or Freon 13, is a non-flammable, non-corrosive, nontoxic chlorofluorocarbon (CFC) and also a mixed halomethane. It is a man-made substance used primarily as a refrigerant. When released into the environment, CFC-13 has a high ozone depletion potential, and long atmospheric lifetime. Only a few other greenhouse gases surpass CFC-13 in global warming potential (GWP). The IPCC AR5 reported that CFC-13's atmospheric lifetime was 640 years.

<span class="mw-page-title-main">Dichlorofluoromethane</span> Chemical compound

Dichlorofluoromethane or Freon 21 or R 21 is a halomethane or hydrochlorofluorocarbon with the formula CHCl2F. It is a colorless and odorless gas. It is produced by fluorination of chloroform using a catalyst such as antimony trifluoride:

Natural refrigerants are considered substances that serve as refrigerants in refrigeration systems. They are alternatives to synthetic refrigerants such as chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), and hydrofluorocarbon (HFC) based refrigerants. Unlike other refrigerants, natural refrigerants can be found in nature and are commercially available thanks to physical industrial processes like fractional distillation, chemical reactions such as Haber process and spin-off gases. The most prominent of these include various natural hydrocarbons, carbon dioxide, ammonia, and water. Natural refrigerants are preferred actually in new equipment to their synthetic counterparts for their presumption of higher degrees of sustainability. With the current technologies available, almost 75 percent of the refrigeration and air conditioning sector has the potential to be converted to natural refrigerants.

<span class="mw-page-title-main">Chloropentafluoroethane</span> Chemical compound

Chloropentafluoroethane is a chlorofluorocarbon (CFC) once used as a refrigerant and also known as R-115 and CFC-115. Its production and consumption has been banned since 1 January 1996 under the Montreal Protocol because of its high ozone depletion potential and very long lifetime when released into the environment. CFC-115 is also a potent greenhouse gas.

HC-12a, also called ES-12a, OZ-12a, DURACOOL 12a and Hydrocarbon Blend B, is a "drop-in" replacement refrigerant for Freon-12 and to a lesser extent, R-134a. HC-12a is a mixture of hydrocarbons, specifically propane (R-290) and isobutane (R-600a), and is therefore considered nearly non-ozone-depleting when compared to dichlorodifluoromethane or 1,1,1,2-tetrafluoroethane (R-134a). The mixture can be used in refrigeration systems designed for R-12. HC-12a provides better cooling than an R-12 system retrofitted to R-134a, with much greater energy efficiency as well. Unlike R-134a, HC-12a is completely compatible with the hoses and oils used in R-12 systems, making the conversion much easier to accomplish. HC-12a is also patent-free due to its non-synthetic nature.

1,1,2-Trichloro-1,2,2-trifluoroethane, also called trichlorotrifluoroethane or CFC-113, is a chlorofluorocarbon. It has the formula Cl2FC−CClF2. This colorless, volatile liquid is a versatile solvent.

<span class="mw-page-title-main">1-Chloro-1,1-difluoroethane</span> Chemical compound

1-Chloro-1,1-difluoroethane (HCFC-142b) is a haloalkane with the chemical formula CH3CClF2. It belongs to the hydrochlorofluorocarbon (HCFC) family of man-made compounds that contribute significantly to both ozone depletion and global warming when released into the environment. It is primarily used as a refrigerant where it is also known as R-142b and by trade names including Freon-142b.

<span class="mw-page-title-main">Tetrachloro-1,1-difluoroethane</span> Chemical compound

Tetrachloro-1,1-difluoroethane or 1,1,1,2-tetrachloro-2,2-difluoroethane, Freon 112a, R-112a, or CFC-112a is an asymmetric chlorofluorocarbon isomer of tetrachloro-1,1-difluoroethane with formula CClF2CCl3. It contains ethane substituted by four chlorine atoms and two fluorine atoms. With a boiling point of 91.5°C it is the freon with second highest boiling point.

<span class="mw-page-title-main">1,1-Dichlorotetrafluoroethane</span> Chemical compound

1,1-Dichlorotetrafluoroethane is a chlorofluorocarbon also known as CFC-114a or R114a by American Society of Heating, Refrigerating, and Air Conditioning Engineers. It has two chlorine atoms on one carbon atom and none on the other. It is one of two isomers of dichlorotetrafluoroethane, the other being 1,2-dichlorotetrafluoroethane, also known as CFC-114.

References

  1. Touloukian, Y. S., Liley, P. E., and Saxena, S. C. Thermophysical properties of matter – the TPRC data series. Volume 3. Thermal conductivity – nonmetallic liquids and gases. Data book. 1970.
  2. Khristenko, Sergei V.; Maslov, Alexander I. and Viatcheslav P. Shevelko; Molecules and Their Spectroscopic Properties, p. 74 ISBN   3642719481.
  3. 1 2 3 4 NIOSH Pocket Guide to Chemical Hazards. "#0192". National Institute for Occupational Safety and Health (NIOSH).
  4. "Dichlorodifluoromethane". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  5. "1:Update on Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol". Scientific assessment of ozone depletion: 2018 (PDF) (Global Ozone Research and Monitoring Project–Report No. 58 ed.). Geneva, Switzerland: World Meteorological Organization. 2018. p. 1.10. ISBN   978-1-7329317-1-8 . Retrieved 22 November 2020.
  6. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 304. ISBN   978-0-08-037941-8.
  7. Plunkett, Roy J. (1986). High Performance Polymers: Their Origin and Development. Elsevier Science Publishing Co., Inc. pp. 261–262. ISBN   978-94-011-7073-4.
  8. "Asthma inhaler replacements coming to Pa. - Pittsburgh Tribune-Review". 16 February 2007. Archived from the original on 16 February 2007. Retrieved 26 April 2022.
  9. "Se cumplen 13 años de la Tragedia de la Cresta". Ensegundos.com.pa. 23 October 2019.
  10. "Victims of the La Cresta tragedy were remembered". M.metrolibra.com. Retrieved 26 April 2022.
  11. "False Alarms: The Legacy of Phosgene Gas". HVAC School. 4 January 2021. Retrieved 9 May 2022.
  12. Holman, Jack P. (2002). Heat Transfer (9th ed.). New York, NY: McGraw-Hill Companies, Inc. pp. 600–606. ISBN   9780072406559.
  13. Incropera 1 Dewitt 2 Bergman 3 Lavigne 4, Frank P. 1 David P. 2 Theodore L. 3 Adrienne S. 4 (2007). Fundamentals of Heat and Mass Transfer (6th ed.). Hoboken, NJ: John Wiley and Sons, Inc. pp. 941–950. ISBN   9780471457282.{{cite book}}: CS1 maint: numeric names: authors list (link)