Fluorine nitrate

Last updated
Fluorine nitrate
Fluorine-nitrate-2D.png
Fluorine nitrate molecule ball.png
Names
Other names
Nitryl hypofluorite
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • InChI=1S/FNO3/c1-5-2(3)4
    Key: VHFBTKQOIBRGQP-UHFFFAOYSA-N
  • FO[N+](=O)[O-]
Properties
FNO3
Molar mass 81.002 g·mol−1
Density 2.217 g/L [1]
Melting point −175 °C (−283.0 °F; 98.1 K)
Boiling point −46 °C (−51 °F; 227 K)
Thermochemistry
+10.46 kJ/mol
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Explosive gas
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Fluorine nitrate is an unstable derivative of nitric acid with the formula FNO
3
. It is shock-sensitive. [1] Due to its instability, it is often produced from chlorine nitrate as needed[ citation needed ]. Fluorine nitrate is an inert molecule thought to play a significant role in atmospheric chemistry. [2]

Contents

History

In 1935, professor George H. Cady was first to synthesize fluorine nitrate and has since maintained a long and controversial history. In 1937, American chemist and biochemist Linus Pauling and one of his first graduate students, Lawrence O. Brockway, utilized electron diffraction intensities to determine the structure of the oxygen and fluorine bond perpendicular to the NO2 plane to be a non-planar structure. This would later be confirmed in 1963 and 1966 utilizing infrared spectra. [3]

In a 1995 study performed by Universität Tubingen in Germany, found through electron diffraction that the nitrogen–oxygen bond is surprisingly long at about a length of 150.7 ppm. This length is likely the result of the presence of electronegative atoms compared to other similar structures such as nitric acid. [3]

Synthesis and properties

Whilst not fully understood, it is thought that FNO
3
forms as a result of termolecular recombination of FO and NO
2
radicals. Fluorine Nitrate is prepared through the agitation of fluorine in its gaseous form, which will bubble through nitric acid or solid KNO3. Due to the shock sensitive nature of the compound, it is necessary to handle it with extreme caution: [4] [5]

F2 + HNO3 → FNO3 + HF
F2 + KNO3 → FNO3 + KF

It decomposes in water to form oxygen gas, oxygen difluoride, hydrofluoric acid, and nitric acid. [1]

In fluorine nitrate, the oxygen atom bridging nitrogen and fluorine is in a rare oxidation state of 0 due to its electronegativity being lower than that of fluorine but higher than that of nitrogen. The role of electronegativity also is significant in the structure of fluorine nitrate. Through electron diffraction analysis, FNO
3
was determined to have a planar structure with a particularly long nitrogen-oxygen bond length. [6]

Fluorine nitrate has been linked to higher ionization potential due to the centrality of fluorine. This higher ionization potential is indicative of electron ionization of deeper shell orbitals. [5]

Applications

Since the 1990s, fluorine nitrate has been studied as a critical factor of atmospheric chemistry. It was in this period that fluorine nitrate began to be labeled as a reservoir species in the atmosphere. [5]

The relationship between the ionization potential and the highest occupied molecular orbital (HOMO) in fluorine nitrate was determined to be large. In a 1996 study, researchers asserted that the ionization potential of the HOMO in a molecule is a reflection of the electron-donating capacities of a molecule and as the ionization potential of the HOMO is lowered, subsequently the electron donating capacities of the molecule increase and become stronger. [5]

Despite the molecule’s inert nature, it is asserted by the 1996 study that fluorine nitrate may be the best possible reservoir species in the process of ozone depletion. [5]

Related Research Articles

Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the associated electronegativity, the more an atom or a substituent group attracts electrons. Electronegativity serves as a simple way to quantitatively estimate the bond energy, and the sign and magnitude of a bond's chemical polarity, which characterizes a bond along the continuous scale from covalent to ionic bonding. The loosely defined term electropositivity is the opposite of electronegativity: it characterizes an element's tendency to donate valence electrons.

In chemistry, electron counting is a formalism for assigning a number of valence electrons to individual atoms in a molecule. It is used for classifying compounds and for explaining or predicting their electronic structure and bonding. Many rules in chemistry rely on electron-counting:

<span class="mw-page-title-main">Nitrogen</span> Chemical element, symbol N and atomic number 7

Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant uncombined element in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.

<span class="mw-page-title-main">Redox</span> Chemical reaction in which oxidation states of atoms are changed

Redox is a type of chemical reaction in which the oxidation states of a reactant change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state.

<span class="mw-page-title-main">Nonmetal</span> Chemical element that mostly lacks the characteristics of a metal

Nonmetals are chemical elements that mostly lack distinctive metallic properties. They range from colorless gases like hydrogen to shiny crystals like iodine. Physically, they are usually lighter than metals; brittle or crumbly if solid; and often poor conductors of heat and electricity. Chemically, nonmetals have high electronegativity ; and their oxides tend to be acidic.

<span class="mw-page-title-main">Oxidizing agent</span> Chemical compound used to oxidize another substance in a chemical reaction

An oxidizing agent is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent. In other words, an oxidizer is any substance that oxidizes another substance. The oxidation state, which describes the degree of loss of electrons, of the oxidizer decreases while that of the reductant increases; this is expressed by saying that oxidizers "undergo reduction" and "are reduced" while reducers "undergo oxidation" and "are oxidized". Common oxidizing agents are oxygen, hydrogen peroxide, and the halogens.

<span class="mw-page-title-main">Dinitrogen tetroxide</span> Chemical compound

Dinitrogen tetroxide, commonly referred to as nitrogen tetroxide (NTO), and occasionally (usually among ex-USSR/Russia rocket engineers) as amyl, is the chemical compound N2O4. It is a useful reagent in chemical synthesis. It forms an equilibrium mixture with nitrogen dioxide. Its molar mass is 92.011 g/mol.

A period 2 element is one of the chemical elements in the second row of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behavior of the elements as their atomic number increases; a new row is started when chemical behavior begins to repeat, creating columns of elements with similar properties.

<span class="mw-page-title-main">Nitric oxide</span> Colorless gas with the formula NO

Nitric oxide is a colorless gas with the formula NO. It is one of the principal oxides of nitrogen. Nitric oxide is a free radical: it has an unpaired electron, which is sometimes denoted by a dot in its chemical formula. Nitric oxide is also a heteronuclear diatomic molecule, a class of molecules whose study spawned early modern theories of chemical bonding.

In electrophilic aromatic substitution reactions, existing substituent groups on the aromatic ring influence the overall reaction rate or have a directing effect on positional isomer of the products that are formed.

In chemistry, a hypervalent molecule is a molecule that contains one or more main group elements apparently bearing more than eight electrons in their valence shells. Phosphorus pentachloride, sulfur hexafluoride, chlorine trifluoride, the chlorite ion, and the triiodide ion are examples of hypervalent molecules.

In chemistry, the inductive effect in a molecule is a local change in the electron density due to electron-withdrawing or electron-donating groups elsewhere in the molecule, resulting in a permanent dipole in a bond. It is present in a σ (sigma) bond, unlike the electromeric effect which is present in a π (pi) bond.

In chemistry, the carbon-hydrogen bond is a chemical bond between carbon and hydrogen atoms that can be found in many organic compounds. This bond is a covalent, single bond, meaning that carbon shares its outer valence electrons with up to four hydrogens. This completes both of their outer shells, making them stable.

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

A carbon–nitrogen bond is a covalent bond between carbon and nitrogen and is one of the most abundant bonds in organic chemistry and biochemistry.

<span class="mw-page-title-main">Radical (chemistry)</span> Atom, molecule, or ion that has an unpaired valence electron; typically highly reactive

In chemistry, a radical, also known as a free radical, is an atom, molecule, or ion that has at least one unpaired valence electron. With some exceptions, these unpaired electrons make radicals highly chemically reactive. Many radicals spontaneously dimerize. Most organic radicals have short lifetimes.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

Pauling's principle of electroneutrality states that each atom in a stable substance has a charge close to zero. It was formulated by Linus Pauling in 1948 and later revised. The principle has been used to predict which of a set of molecular resonance structures would be the most significant, to explain the stability of inorganic complexes and to explain the existence of π-bonding in compounds and polyatomic anions containing silicon, phosphorus or sulfur bonded to oxygen; it is still invoked in the context of coordination complexes. However, modern computational techniques indicate many stable compounds have a greater charge distribution than the principle predicts.

<span class="mw-page-title-main">Nitrogen difluoride</span> Chemical compound

Nitrogen difluoride, also known as difluoroamino, is a reactive radical molecule with formula NF2. This small molecule is in equilibrium with its dimer tetrafluorohydrazine.

<span class="mw-page-title-main">Trifluoramine oxide</span> Chemical compound

Trifluoramine oxide or Nitrogen trifluoride oxide (F3NO) is an inorganic molecule with strong fluorinating powers.

References

  1. 1 2 3 Ruff, Otto; Kwasnik, Walter (1935). "The fluorination of nitric acid. The nitroxyfluoride, NO3F". Angewandte Chemie. 48: 238–240. doi:10.1002/ange.19350481604.
  2. Jensen, James O. (2005-03-07). "Vibrational frequencies and structural determination of fluorine nitrate". Journal of Molecular Structure: THEOCHEM. 716 (1): 11–17. doi:10.1016/j.theochem.2004.10.041. ISSN   0166-1280.
  3. 1 2 Oberhammer, H. (2002-03-13). "The NO bond in covalent nitrates and nitrites". Journal of Molecular Structure. 605 (2): 177–185. doi:10.1016/S0022-2860(01)00766-9. ISSN   0022-2860.
  4. Elliott, Scott (1983-01-01). "Ultraviolet absorption spectra of FNO3 and HOF". Atmospheric Environment (1967). 17 (4): 759–761. doi:10.1016/0004-6981(83)90424-9. ISSN   0004-6981.
  5. 1 2 3 4 5 Dianxun, Wang; Peng, Jiang; Qiyuan, Zhang (1996-11-29). "HeI photoelectron spectrum (PES) of fluorine nitrate, FONO2". Chemical Physics Letters. 262 (6): 771–775. doi:10.1016/S0009-2614(96)01154-2. ISSN   0009-2614.
  6. Casper, Bernd; Mack, Hans-Georg; Oberhammer, Heinz (1995-04-01). "Gas-phase structures of some hypofluorites: FOSF5, FOSO2F, FOClO3 and FONO2". Journal of Fluorine Chemistry. Papers presented at the American Chemical Society - George H. Cady Memorial Symposium. 71 (2): 215. doi:10.1016/0022-1139(94)06031-G. ISSN   0022-1139.