Flat-panel display

Last updated

Information on two types of flat-panel display at the Zurich Hauptbahnhof railway station: an orange LED display (top right) and a LCD screen (bottom) Zurich Hauptbahnhof (Ank Kumar Infy) 20.jpg
Information on two types of flat-panel display at the Zürich Hauptbahnhof railway station: an orange LED display (top right) and a LCD screen (bottom)

A flat-panel display (FPD) is an electronic display used to display visual content such as text or images. It is present in consumer, medical, transportation, and industrial equipment.

Contents

Flat-panel displays are thin, lightweight, provide better linearity and are capable of higher resolution than typical consumer-grade TVs from earlier eras. They are usually less than 10 centimetres (3.9 in) thick. While the highest resolution for consumer-grade CRT televisions was 1080i, many flat-panel displays in the 2020s are capable of 1080p and 4K resolution.

In the 2010s, portable consumer electronics such as laptops, mobile phones, and portable cameras have used flat-panel displays since they consume less power and are lightweight. As of 2016, flat-panel displays have almost completely replaced CRT displays.

Most 2010s-era flat-panel displays use LCD or light-emitting diode (LED) technologies, sometimes combined. Most LCD screens are back-lit with color filters used to display colors. In many cases, flat-panel displays are combined with touch screen technology, which allows the user to interact with the display in a natural manner. For example, modern smartphone displays often use OLED panels, with capacitive touch screens.

Flat-panel displays can be divided into two display device categories: volatile and static. The former requires that pixels be periodically electronically refreshed to retain their state (e.g. liquid-crystal displays (LCD)), and can only show an image when it has power. On the other hand, static flat-panel displays rely on materials whose color states are bistable, such as displays that make use of e-ink technology, and as such retain content even when power is removed.

History

The first engineering proposal for a flat-panel TV was by General Electric in 1954 as a result of its work on radar monitors. The publication of their findings gave all the basics of future flat-panel TVs and monitors. But GE did not continue with the R&D required and never built a working flat panel at that time. [1] The first production flat-panel display was the Aiken tube, developed in the early 1950s and produced in limited numbers in 1958. This saw some use in military systems as a heads up display and as an oscilloscope monitor, but conventional technologies overtook its development. Attempts to commercialize the system for home television use ran into continued problems and the system was never released commercially. [2] [3] [4]

Dennis Gabor, better known as the inventor of holography, patented a flat-screen CRT in 1958. This was substantially similar to Aiken's concept, and led to a years-long patent battle. By the time the lawsuits were complete, with Aiken's patent applying in the US and Gabor's in the UK, the commercial aspects had long lapsed, and the two became friends. [5] Around this time,Clive Sinclair came across Gabor's work and began an ultimately unsuccessful decade-long effort to commercialize it. [6]

The Philco Predicta featured a relatively flat (for its day) cathode ray tube setup and would be the first commercially released "flat panel" upon its launch in 1958; the Predicta was a commercial failure. The plasma display panel was invented in 1964 at the University of Illinois, according to The History of Plasma Display Panels. [7]

Liquid-crystal displays (LC displays, or LCDs)

The MOSFET (metal–oxide–semiconductor field-effect transistor, or MOS transistor) was invented by Mohamed M. Atalla and Dawon Kahng at Bell Labs in 1959, [8] and presented in 1960. [9] Building on their work, Paul K. Weimer at RCA developed the thin-film transistor (TFT) in 1962. [10] It was a type of MOSFET distinct from the standard bulk MOSFET. [11] The idea of a TFT-based LCD was conceived by Bernard J. Lechner of RCA Laboratories in 1968. [12] B.J. Lechner, F.J. Marlowe, E.O. Nester and J. Tults demonstrated the concept in 1968 with a dynamic scattering LCD that used standard discrete MOSFETs. [13]

The first active-matrix addressed electroluminescent display (ELD) was made using TFTs by T. Peter Brody's Thin-Film Devices department at Westinghouse Electric Corporation in 1968. [14] In 1973, Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories demonstrated the first thin-film-transistor liquid-crystal display (TFT LCD). [15] [16] Brody and Fang-Chen Luo demonstrated the first flat active-matrix liquid-crystal display (AM LCD) using TFTs in 1974. [12]

By 1982, pocket LCD TVs based on LCD technology were developed in Japan. [17] The 2.1-inch Epson ET-10 [18] Epson Elf was the first color LCD pocket TV, released in 1984. [19] In 1988, a Sharp research team led by engineer T. Nagayasu demonstrated a 14-inch full-color LCD, [12] [20] which convinced the electronics industry that LCD would eventually replace CRTs as the standard television display technology. [12] As of 2013, all modern high-resolution and high-quality electronic visual display devices use TFT-based active-matrix displays. [21]

LED displays

The first usable LED display was developed by Hewlett-Packard (HP) and introduced in 1968. [22] It was the result of research and development (R&D) on practical LED technology between 1962 and 1968, by a research team under Howard C. Borden, Gerald P. Pighini, and Mohamed M. Atalla, at HP Associates and HP Labs. In February 1969, they introduced the HP Model 5082-7000 Numeric Indicator. [23] It was the first alphanumeric LED display, and was a revolution in digital display technology, replacing the Nixie tube for numeric displays and becoming the basis for later LED displays. [24] In 1977, James P Mitchell prototyped and later demonstrated what was perhaps the earliest monochromatic flat-panel LED television display.

Ching W. Tang and Steven Van Slyke at Eastman Kodak built the first practical organic LED (OLED) device in 1987. [25] In 2003, Hynix produced an organic EL driver capable of lighting in 4,096 colors. [26] In 2004, the Sony Qualia 005 was the first LED-backlit LCD. [27] The Sony XEL-1, released in 2007, was the first OLED television. [28]

Common types

Liquid-crystal display (LCD)

An LCD screen used as an information display for travellers Expo line passenger information display..jpg
An LCD screen used as an information display for travellers

Field-effect LCDs are lightweight, compact, portable, cheap, more reliable, and easier on the eyes than CRT screens. LCD screens use a thin layer of liquid crystal, a liquid that exhibits crystalline properties. It is sandwiched between two glass plates carrying transparent electrodes. Two polarizing films are placed at each side of the LCD. By generating a controlled electric field between electrodes, various segments or pixels of the liquid crystal can be activated, causing changes in their polarizing properties. These polarizing properties depend on the alignment of the liquid-crystal layer and the specific field-effect used, being either Twisted Nematic (TN), In-Plane Switching (IPS) or Vertical Alignment (VA). Color is produced by applying appropriate color filters (red, green and blue) to the individual subpixels. LC displays are used in various electronics like watches, calculators, mobile phones, TVs, computer monitors and laptops screens etc.

LED-LCD

Most earlier large LCD screens were back-lit using a number of CCFL (cold-cathode fluorescent lamps). However, small pocket size devices almost always used LEDs as their illumination source. With the improvement of LEDs, almost all new displays are now equipped with LED backlight technology. The image is still generated by the LCD layer.

Plasma panel

A plasma display consists of two glass plates separated by a thin gap filled with a gas such as neon. Each of these plates has several parallel electrodes running across it. The electrodes on the two plates are at right angles to each other. A voltage applied between the two electrodes one on each plate causes a small segment of gas at the two electrodes to glow. The glow of gas segments is maintained by a lower voltage that is continuously applied to all electrodes. By 2010, consumer plasma displays had been discontinued by numerous manufacturers.

Electroluminescent panel

In an electroluminescent display (ELD), the image is created by applying electrical signals to the plates which make the phosphor glow.

Organic light-emitting diode

An OLED (organic light-emitting diode) is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compound which emits light in response to an electric current. This layer of organic semiconductor is situated between two electrodes; typically, at least one of these electrodes is transparent. OLEDs are used to create digital displays in devices such as television screens, computer monitors, portable systems such as mobile phones, handheld game consoles and PDAs.

Quantum-dot light-emitting diode

QLED or quantum dot LED is a flat panel display technology introduced by Samsung under this trademark. Other television set manufacturers such as Sony have used the same technology to enhance the backlighting of LCD TVs already in 2013. [29] [30] Quantum dots create their own unique light when illuminated by a light source of shorter wavelength such as blue LEDs. This type of LED TV enhances the colour gamut of LCD panels, where the image is still generated by the LCD. In the view of Samsung, quantum dot displays for large-screen TVs are expected to become more popular than the OLED displays in the coming years; Firms like Nanoco and Nanosys compete to provide the QD materials. In the meantime, Samsung Galaxy devices such as smartphones are still equipped with OLED displays manufactured by Samsung as well. Samsung explains on their website that the QLED TV they produce can determine what part of the display needs more or less contrast. Samsung also announced a partnership with Microsoft that will promote the new Samsung QLED TV.

Volatile

A large LED display at the Taipei Arena displays commercials and movie trailers. Taipei Mini-Big Egg 02.jpg
A large LED display at the Taipei Arena displays commercials and movie trailers.

Volatile displays require that pixels be periodically refreshed to retain their state, even for a static image. As such, a volatile screen needs electrical power, either from mains electricity (being plugged into a wall socket) or a battery to maintain an image on the display or change the image. This refresh typically occurs many times a second. If this is not done, for example, if there is a power outage, the pixels will gradually lose their coherent state, and the image will "fade" from the screen.

Examples

The following flat-display technologies have been commercialized in 1990s to 2010s:

Technologies that were extensively researched, but their commercialization was limited or has been ultimately abandoned:

Static

Amazon's Kindle Keyboard e-reader displaying a page of an e-book. The Kindle's image of the book's text will remain onscreen even if the battery runs out, as it is a static screen technology. Without power, however, the user cannot change to a new page. Amazon Kindle 3.JPG
Amazon's Kindle Keyboard e-reader displaying a page of an e-book. The Kindle's image of the book's text will remain onscreen even if the battery runs out, as it is a static screen technology. Without power, however, the user cannot change to a new page.

Static flat-panel displays rely on materials whose color states are bistable. This means that the image they hold requires no energy to maintain, but instead requires energy to change. This results in a much more energy-efficient display, but with a tendency toward slow refresh rates which are undesirable in an interactive display. Bistable flat-panel displays are beginning deployment in limited applications (cholesteric liquid-crystal displays, manufactured by Magink, in outdoor advertising; electrophoretic displays in e-book reader devices from Sony and iRex; anlabels; interferometric modulator displays in a smartwatch).

See also

Related Research Articles

<span class="mw-page-title-main">Liquid-crystal display</span> Display that uses the light-modulating properties of liquid crystals

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directly but instead use a backlight or reflector to produce images in color or monochrome.

<span class="mw-page-title-main">Plasma display</span> Type of flat panel display

A plasma display panel (PDP) is a type of flat panel display that uses small cells containing plasma: ionized gas that responds to electric fields. Plasma televisions were the first large flat panel displays to be released to the public.

An active-matrix liquid-crystal display (AMLCD) is a type of flat-panel display used in high-resolution TVs, computer monitors, notebook computers, tablet computers and smartphones with an LCD screen, due to low weight, very good image quality, wide color gamut and fast response time.

<span class="mw-page-title-main">OLED</span> Diode that emits light from an organic compound

An organic light-emitting diode (OLED), also known as organic electroluminescentdiode, is a type of light-emitting diode (LED) in which the emissive electroluminescent layer is an organic compound film that emits light in response to an electric current. This organic layer is situated between two electrodes; typically, at least one of these electrodes is transparent. OLEDs are used to create digital displays in devices such as television screens, computer monitors, and portable systems such as smartphones and handheld game consoles. A major area of research is the development of white OLED devices for use in solid-state lighting applications.

<span class="mw-page-title-main">Display device</span> Output device for presentation of information in visual form

A display device is an output device for presentation of information in visual or tactile form. When the input information that is supplied has an electrical signal the display is called an electronic display.

Active matrix is a type of addressing scheme used in flat panel displays. In this method of switching individual elements (pixels), each pixel is attached to a transistor and capacitor actively maintaining the pixel state while other pixels are being addressed, in contrast with the older passive matrix technology in which each pixel must maintain its state passively, without being driven by circuitry.

A television set or television receiver is an electronic device for the purpose of viewing and hearing television broadcasts, or as a computer monitor. It combines a tuner, display, and loudspeakers. Introduced in the late 1920s in mechanical form, television sets became a popular consumer product after World War II in electronic form, using cathode ray tube (CRT) technology. The addition of color to broadcast television after 1953 further increased the popularity of television sets in the 1960s, and an outdoor antenna became a common feature of suburban homes. The ubiquitous television set became the display device for the first recorded media for consumer use in the 1970s, such as Betamax, VHS; these were later succeeded by DVD. It has been used as a display device since the first generation of home computers and dedicated video game consoles in the 1980s. By the early 2010s, flat-panel television incorporating liquid-crystal display (LCD) technology, especially LED-backlit LCD technology, largely replaced CRT and other display technologies. Modern flat panel TVs are typically capable of high-definition display and can also play content from a USB device. Starting in the late 2010s, most flat panel TVs began to offer 4K and 8K resolutions.

<span class="mw-page-title-main">LCD television</span> Television set with liquid-crystal display

A liquid-crystal-display television is a television set that uses a liquid-crystal display to produce images. It is by far the most widely produced and sold type of television display. LCD TVs are thin and light, but have some disadvantages compared to other display types such as high power consumption, poorer contrast ratio, and inferior color gamut.

A thin-film-transistor liquid-crystal display is a type of liquid-crystal display that uses thin-film-transistor technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments.

<span class="mw-page-title-main">Large-screen television technology</span> Technology rapidly developed in the late 1990s and 2000s

Large-screen television technology developed rapidly in the late 1990s and 2000s. Prior to the development of thin-screen technologies, rear-projection television was standard for larger displays, and jumbotron, a non-projection video display technology, was used at stadiums and concerts. Various thin-screen technologies are being developed, but only liquid crystal display (LCD), plasma display (PDP) and Digital Light Processing (DLP) have been publicly released. Recent technologies like organic light-emitting diode (OLED) as well as not-yet-released technologies like surface-conduction electron-emitter display (SED) or field emission display (FED) are in development to supercede earlier flat-screen technologies in picture quality.

An electronic visual display is a display device that can display images, video, or text that is transmitted electronically. Electronic visual displays include television sets, computer monitors, and digital signage. They are ubiquitous in mobile computing applications like tablet computers, smartphones, and information appliances. Many electronic visual displays are informally referred to as screens.

Indium gallium zinc oxide (IGZO) is a semiconducting material, consisting of indium (In), gallium (Ga), zinc (Zn) and oxygen (O). IGZO thin-film transistors (TFT) are used in the TFT backplane of flat-panel displays (FPDs). IGZO-TFT was developed by Hideo Hosono's group at Tokyo Institute of Technology and Japan Science and Technology Agency (JST) in 2003 and in 2004. IGZO-TFT has 20–50 times the electron mobility of amorphous silicon, which has often been used in liquid-crystal displays (LCDs) and e-papers. As a result, IGZO-TFT can improve the speed, resolution and size of flat-panel displays. It is currently used as the thin-film transistors for use in organic light-emitting diode (OLED) TV displays.

<span class="mw-page-title-main">AMOLED</span> Display technology for use in mobile devices and televisions

AMOLED is a type of OLED display device technology. OLED describes a specific type of thin-film-display technology in which organic compounds form the electroluminescent material, and active matrix refers to the technology behind the addressing of pixels.

<span class="mw-page-title-main">LED-backlit LCD</span> Display technology implementation

An LED-backlit LCD is a liquid-crystal display that uses LEDs for backlighting instead of traditional cold cathode fluorescent (CCFL) backlighting. LED-backlit displays use the same TFT LCD technologies as CCFL-backlit LCDs, but offer a variety of advantages over them.

Electrically operated display devices have developed from electromechanical systems for display of text, up to all-electronic devices capable of full-motion 3D color graphic displays. Electromagnetic devices, using a solenoid coil to control a visible flag or flap, were the earliest type, and were used for text displays such as stock market prices and arrival/departure display times. The cathode ray tube was the workhorse of text and video display technology for several decades until being displaced by plasma, liquid crystal (LCD), and solid-state devices such as thin-film transistors (TFTs), LEDs and OLEDs. With the advent of metal–oxide–semiconductor field-effect transistors (MOSFETs), integrated circuit (IC) chips, microprocessors, and microelectronic devices, many more individual picture elements ("pixels") could be incorporated into one display device, allowing graphic displays and video.

<span class="mw-page-title-main">Quantum dot display</span> Type of display device

A quantum dot display is a display device that uses quantum dots (QD), semiconductor nanocrystals which can produce pure monochromatic red, green, and blue light. Photo-emissive quantum dot particles are used in LCD backlights or display color filters. Quantum dots are excited by the blue light from the display panel to emit pure basic colors, which reduces light losses and color crosstalk in color filters, improving display brightness and color gamut. Light travels through QD layer film and traditional RGB filters made from color pigments, or through QD filters with red/green QD color converters and blue passthrough. Although the QD color filter technology is primarily used in LED-backlit LCDs, it is applicable to other display technologies which use color filters, such as blue/UV active-matrix organic light-emitting diode (AMOLED) or QNED/MicroLED display panels. LED-backlit LCDs are the main application of photo-emissive quantum dots, though blue OLED panels with QD color filters are being researched.

<span class="mw-page-title-main">See-through display</span> A display which can be seen through

A see-through display or transparent display is an electronic display that allows the user to see what is shown on the screen while still being able to see through it. The main applications of this type of display are in head-up displays, augmented reality systems, digital signage, and general large-scale spatial light modulation. They should be distinguished from image-combination systems which achieve visually similar effects by optically combining multiple images in the field of view. Transparent displays embed the active matrix of the display in the field of view, which generally allows them to be more compact than combination-based systems.

Low-temperature polycrystalline silicon (LTPS) is polycrystalline silicon that has been synthesized at relatively low temperatures compared to in traditional methods. LTPS is important for display industries, since the use of large glass panels prohibits exposure to deformative high temperatures. More specifically, the use of polycrystalline silicon in thin-film transistors (LTPS-TFT) has high potential for large-scale production of electronic devices like flat panel LCD displays or image sensors.

References

  1. "Proposed Television Sets Would Feature Thin Screens." Popular Mechanics, November 1954, p. 111.
  2. William Ross Aiken, "History of the Kaiser-Aiken, thin cathode ray tube", IEEE Transactions on Electron Devices, Volume 31 Issue 11 (November 1984), pp. 1605–1608.
  3. "Flat Screen TV in 1958 – Popular Mechanics (Jan, 1958)".
  4. "Geer Experimental Color CRT". www.earlytelevision.org.
  5. Cobleigh, Jaimeson (30 October 1996). "Interview with William Ross Aiken" (PDF) (Interview). IEEE History Center'.
  6. Adamson, Ian; Kennedy, Richard (1986). Sinclair and the 'sunrise' Technology. Penguin.
  7. Plasma TV Science.org – The History of Plasma Display Panels
  8. "1960 – Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum . Retrieved 29 July 2019.
  9. Atalla, M.; Kahng, D. (1960). "Silicon-silicon dioxide field induced surface devices". IRE-AIEE Solid State Device Research Conference.
  10. Weimer, Paul K. (June 1962). "The TFT A New Thin-Film Transistor". Proceedings of the IRE . 50 (6): 1462–1469. doi:10.1109/JRPROC.1962.288190. ISSN   0096-8390. S2CID   51650159.
  11. Kimizuka, Noboru; Yamazaki, Shunpei (2016). Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO: Fundamentals. John Wiley & Sons. p. 217. ISBN   9781119247401.
  12. 1 2 3 4 Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN   1551-319X.
  13. Castellano, Joseph A. (2005). Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry. World Scientific. pp. 41–2. ISBN   9789812389565.
  14. Castellano, Joseph A. (2005). Liquid gold: the story of liquid crystal displays and the creation of an industry ([Online-Ausg.] ed.). New Jersey [u.a.]: World Scientific. pp. 176–7. ISBN   981-238-956-3.
  15. Kuo, Yue (1 January 2013). "Thin Film Transistor Technology—Past, Present, and Future" (PDF). The Electrochemical Society Interface. 22 (1): 55–61. Bibcode:2013ECSIn..22a..55K. doi: 10.1149/2.F06131if . ISSN   1064-8208.
  16. Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". IEEE Transactions on Electron Devices . 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN   0018-9383.
  17. Morozumi, Shinji; Oguchi, Kouichi (12 October 1982). "Current Status of LCD-TV Development in Japan". Molecular Crystals and Liquid Crystals. 94 (1–2): 43–59. doi:10.1080/00268948308084246. ISSN   0026-8941.
  18. Souk, Jun; Morozumi, Shinji; Luo, Fang-Chen; Bita, Ion (2018). Flat Panel Display Manufacturing. John Wiley & Sons. pp. 2–3. ISBN   9781119161356.
  19. "ET-10". Epson . Archived from the original on 4 February 2020. Retrieved 29 July 2019.
  20. Nagayasu, T.; Oketani, T.; Hirobe, T.; Kato, H.; Mizushima, S.; Take, H.; Yano, K.; Hijikigawa, M.; Washizuka, I. (October 1988). "A 14-in.-diagonal full-color a-Si TFT LCD". Conference Record of the 1988 International Display Research Conference. pp. 56–58. doi:10.1109/DISPL.1988.11274. S2CID   20817375.
  21. Brotherton, S. D. (2013). Introduction to Thin Film Transistors: Physics and Technology of TFTs. Springer Science & Business Media. p. 74. ISBN   9783319000022.
  22. Kramer, Bernhard (2003). Advances in Solid State Physics. Springer Science & Business Media. p. 40. ISBN   9783540401506.
  23. Borden, Howard C.; Pighini, Gerald P. (February 1969). "Solid-State Displays" (PDF). Hewlett-Packard Journal : 2–12.
  24. "Hewlett-Packard 5082–7000". The Vintage Technology Association. Retrieved 15 August 2019.
  25. Tang, C. W.; Vanslyke, S. A. (1987). "Organic electroluminescent diodes". Applied Physics Letters. 51 (12): 913. Bibcode:1987ApPhL..51..913T. doi:10.1063/1.98799.
  26. "History: 2000s". SK Hynix . Archived from the original on 6 August 2020. Retrieved 8 July 2019.
  27. Wilkinson, Scott (19 November 2008). "Sony KDL-55XBR8 LCD TV". Sound & Vision . Retrieved 3 October 2019.
  28. Sony XEL-1:The world's first OLED TV Archived 5 February 2016 at the Wayback Machine , OLED-Info.com (17 November 2008).
  29. CES 2015 placing bets on new TV technologies. IEEE Spectrum, 7 January 2015. Retrieved 21 October 2017
  30. LG leaps quantum dot rivals with new TV. CNET, 16 December 2014. Retrieved 21 October 2017