HOMFLY polynomial

Last updated

In the mathematical field of knot theory, the HOMFLY polynomial or HOMFLYPT polynomial, sometimes called the generalized Jones polynomial, is a 2-variable knot polynomial, i.e. a knot invariant in the form of a polynomial of variables m and l.

Contents

A central question in the mathematical theory of knots is whether two knot diagrams represent the same knot. One tool used to answer such questions is a knot polynomial, which is computed from a diagram of the knot and can be shown to be an invariant of the knot, i.e. diagrams representing the same knot have the same polynomial. The converse may not be true. The HOMFLY polynomial is one such invariant and it generalizes two polynomials previously discovered, the Alexander polynomial and the Jones polynomial, both of which can be obtained by appropriate substitutions from HOMFLY. The HOMFLY polynomial is also a quantum invariant.

The name HOMFLY combines the initials of its co-discoverers: Jim Hoste, Adrian Ocneanu, Kenneth Millett, Peter J. Freyd, W. B. R. Lickorish, and David N. Yetter. [1] The addition of PT recognizes independent work carried out by Józef H. Przytycki and Paweł Traczyk. [2]

Definition

The polynomial is defined using skein relations:

where are links formed by crossing and smoothing changes on a local region of a link diagram, as indicated in the figure.

Skein (HOMFLY).svg

The HOMFLY polynomial of a link L that is a split union of two links and is given by

See the page on skein relation for an example of a computation using such relations.

Other HOMFLY skein relations

This polynomial can be obtained also using other skein relations:

Main properties

, where # denotes the knot sum; thus the HOMFLY polynomial of a composite knot is the product of the HOMFLY polynomials of its components.
, so the HOMFLY polynomial can often be used to distinguish between two knots of different chirality. However there exist chiral pairs of knots that have the same HOMFLY polynomial, e.g. knots 942 and 1071 together with their respective mirror images. [3]

The Jones polynomial, V(t), and the Alexander polynomial, can be computed in terms of the HOMFLY polynomial (the version in and variables) as follows:

Related Research Articles

<span class="mw-page-title-main">Knot theory</span> Study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.

<span class="mw-page-title-main">Knot polynomial</span>

In the mathematical field of knot theory, a knot polynomial is a knot invariant in the form of a polynomial whose coefficients encode some of the properties of a given knot.

Skein relations are a mathematical tool used to study knots. A central question in the mathematical theory of knots is whether two knot diagrams represent the same knot. One way to answer the question is using knot polynomials, which are invariants of the knot. If two diagrams have different polynomials, they represent different knots. In general, the converse does not hold.

In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials: the Hermite polynomials, Laguerre polynomials, Jacobi polynomials.

In linear algebra, a Hankel matrix, named after Hermann Hankel, is a square matrix in which each ascending skew-diagonal from left to right is constant, e.g.:

<span class="mw-page-title-main">Trefoil knot</span> Simplest non-trivial closed knot with three crossings

In knot theory, a branch of mathematics, the trefoil knot is the simplest example of a nontrivial knot. The trefoil can be obtained by joining the two loose ends of a common overhand knot, resulting in a knotted loop. As the simplest knot, the trefoil is fundamental to the study of mathematical knot theory.

In mathematics, specifically algebraic topology, the cohomology ring of a topological space X is a ring formed from the cohomology groups of X together with the cup product serving as the ring multiplication. Here 'cohomology' is usually understood as singular cohomology, but the ring structure is also present in other theories such as de Rham cohomology. It is also functorial: for a continuous mapping of spaces one obtains a ring homomorphism on cohomology rings, which is contravariant.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

In mathematics, the Alexander polynomial is a knot invariant which assigns a polynomial with integer coefficients to each knot type. James Waddell Alexander II discovered this, the first knot polynomial, in 1923. In 1969, John Conway showed a version of this polynomial, now called the Alexander–Conway polynomial, could be computed using a skein relation, although its significance was not realized until the discovery of the Jones polynomial in 1984. Soon after Conway's reworking of the Alexander polynomial, it was realized that a similar skein relation was exhibited in Alexander's paper on his polynomial.

<span class="mw-page-title-main">Józef H. Przytycki</span> Polish American mathematician

Józef Henryk Przytycki, is a Polish mathematician specializing in the fields of knot theory and topology.

In mathematics, Khovanov homology is an oriented link invariant that arises as the cohomology of a cochain complex. It may be regarded as a categorification of the Jones polynomial.

The Tait conjectures are three conjectures made by 19th-century mathematician Peter Guthrie Tait in his study of knots. The Tait conjectures involve concepts in knot theory such as alternating knots, chirality, and writhe. All of the Tait conjectures have been solved, the most recent being the Flyping conjecture.

In the mathematical field of knot theory, a chiral knot is a knot that is not equivalent to its mirror image. An oriented knot that is equivalent to its mirror image is an amphicheiral knot, also called an achiral knot. The chirality of a knot is a knot invariant. A knot's chirality can be further classified depending on whether or not it is invertible.

In knot theory, the Kauffman polynomial is a 2-variable knot polynomial due to Louis Kauffman. It is initially defined on a link diagram as

<span class="mw-page-title-main">W. B. R. Lickorish</span> British mathematician (born 1938)

William Bernard Raymond Lickorish is a mathematician. He is emeritus professor of geometric topology in the Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, and also an emeritus fellow of Pembroke College, Cambridge. His research interests include topology and knot theory. He was one of the discoverers of the HOMFLY polynomial invariant of links, and proved the Lickorish-Wallace theorem which states that all closed orientable 3-manifolds can be obtained by Dehn surgery on a link.

In mathematics, the Kostant polynomials, named after Bertram Kostant, provide an explicit basis of the ring of polynomials over the ring of polynomials invariant under the finite reflection group of a root system.

In the mathematical study of rotational symmetry, the zonal spherical harmonics are special spherical harmonics that are invariant under the rotation through a particular fixed axis. The zonal spherical functions are a broad extension of the notion of zonal spherical harmonics to allow for a more general symmetry group.

Kenneth C. Millett is a professor of mathematics at the University of California, Santa Barbara. His research concerns low-dimensional topology, knot theory, and the applications of knot theory to DNA structure; his initial is the "M" in the name of the HOMFLY polynomial.

In the mathematical field of quantum topology, the Reshetikhin–Turaev invariants (RT-invariants) are a family of quantum invariants of framed links. Such invariants of framed links also give rise to invariants of 3-manifolds via the Dehn surgery construction. These invariants were discovered by Nicolai Reshetikhin and Vladimir Turaev in 1991, and were meant to be a mathematical realization of Witten's proposed invariants of links and 3-manifolds using quantum field theory.

References

  1. Freyd, P.; Yetter, D.; Hoste, J.; Lickorish, W.B.R.; Millett, K.; Ocneanu, A. (1985). "A New Polynomial Invariant of Knots and Links". Bulletin of the American Mathematical Society. 12 (2): 239–246. doi: 10.1090/S0273-0979-1985-15361-3 .
  2. Józef H. Przytycki; .Paweł Traczyk (1987). "Invariants of Links of Conway Type". Kobe J. Math. 4: 115–139. arXiv: 1610.06679 .
  3. Ramadevi, P.; Govindarajan, T.R.; Kaul, R.K. (1994). "Chirality of Knots 942 and 1071 and Chern-Simons Theory". Modern Physics Letters A. 09 (34): 3205–3217. arXiv: hep-th/9401095 . Bibcode:1994MPLA....9.3205R. doi:10.1142/S0217732394003026. S2CID   119143024.

Further reading