Moving frame

Last updated
The Frenet-Serret frame on a curve is the simplest example of a moving frame. Frenet-Serret moving frame1.png
The Frenet–Serret frame on a curve is the simplest example of a moving frame.

In mathematics, a moving frame is a flexible generalization of the notion of an ordered basis of a vector space often used to study the extrinsic differential geometry of smooth manifolds embedded in a homogeneous space.

Contents

Introduction

In lay terms, a frame of reference is a system of measuring rods used by an observer to measure the surrounding space by providing coordinates. A moving frame is then a frame of reference which moves with the observer along a trajectory (a curve). The method of the moving frame, in this simple example, seeks to produce a "preferred" moving frame out of the kinematic properties of the observer. In a geometrical setting, this problem was solved in the mid 19th century by Jean Frédéric Frenet and Joseph Alfred Serret. [1] The Frenet–Serret frame is a moving frame defined on a curve which can be constructed purely from the velocity and acceleration of the curve. [2]

The Frenet–Serret frame plays a key role in the differential geometry of curves, ultimately leading to a more or less complete classification of smooth curves in Euclidean space up to congruence. [3] The Frenet–Serret formulas show that there is a pair of functions defined on the curve, the torsion and curvature, which are obtained by differentiating the frame, and which describe completely how the frame evolves in time along the curve. A key feature of the general method is that a preferred moving frame, provided it can be found, gives a complete kinematic description of the curve.

Darboux trihedron, consisting of a point P, and a triple of orthogonal unit vectors e1, e2, and e3 which is adapted to a surface in the sense that P lies on the surface, and e3 is perpendicular to the surface. Darboux trihedron.svg
Darboux trihedron, consisting of a point P, and a triple of orthogonal unit vectors e1, e2, and e3 which is adapted to a surface in the sense that P lies on the surface, and e3 is perpendicular to the surface.

In the late 19th century, Gaston Darboux studied the problem of constructing a preferred moving frame on a surface in Euclidean space instead of a curve, the Darboux frame (or the trièdre mobile as it was then called). It turned out to be impossible in general to construct such a frame, and that there were integrability conditions which needed to be satisfied first. [1]

Later, moving frames were developed extensively by Élie Cartan and others in the study of submanifolds of more general homogeneous spaces (such as projective space). In this setting, a frame carries the geometric idea of a basis of a vector space over to other sorts of geometrical spaces (Klein geometries). Some examples of frames are: [3]

In each of these examples, the collection of all frames is homogeneous in a certain sense. In the case of linear frames, for instance, any two frames are related by an element of the general linear group. Projective frames are related by the projective linear group. This homogeneity, or symmetry, of the class of frames captures the geometrical features of the linear, affine, Euclidean, or projective landscape. A moving frame, in these circumstances, is just that: a frame which varies from point to point.

Formally, a frame on a homogeneous space G/H consists of a point in the tautological bundle GG/H. A moving frame is a section of this bundle. It is moving in the sense that as the point of the base varies, the frame in the fibre changes by an element of the symmetry group G. A moving frame on a submanifold M of G/H is a section of the pullback of the tautological bundle to M. Intrinsically [5] a moving frame can be defined on a principal bundle P over a manifold. In this case, a moving frame is given by a G-equivariant mapping φ : PG, thus framing the manifold by elements of the Lie group G.

One can extend the notion of frames to a more general case: one can "solder" a fiber bundle to a smooth manifold, in such a way that the fibers behave as if they were tangent. When the fiber bundle is a homogenous space, this reduces to the above-described frame-field. When the homogenous space is a quotient of special orthogonal groups, this reduces to the standard conception of a vierbein.

Although there is a substantial formal difference between extrinsic and intrinsic moving frames, they are both alike in the sense that a moving frame is always given by a mapping into G. The strategy in Cartan's method of moving frames, as outlined briefly in Cartan's equivalence method, is to find a natural moving frame on the manifold and then to take its Darboux derivative, in other words pullback the Maurer-Cartan form of G to M (or P), and thus obtain a complete set of structural invariants for the manifold. [3]

Method of the moving frame

Cartan (1937) formulated the general definition of a moving frame and the method of the moving frame, as elaborated by Weyl (1938). The elements of the theory are

The following axioms are then assumed to hold between these elements:

Of interest to the method are parameterized submanifolds of X. The considerations are largely local, so the parameter domain is taken to be an open subset of Rλ. Slightly different techniques apply depending on whether one is interested in the submanifold along with its parameterization, or the submanifold up to reparameterization.

Moving tangent frames

The most commonly encountered case of a moving frame is for the bundle of tangent frames (also called the frame bundle ) of a manifold. In this case, a moving tangent frame on a manifold M consists of a collection of vector fields e1, e2, …, en forming a basis of the tangent space at each point of an open set UM.

If is a coordinate system on U, then each vector field ej can be expressed as a linear combination of the coordinate vector fields :

where each is a function on U. These can be seen as the components of a matrix . This matrix is useful for finding the coordinate expression of the dual coframe, as explained in the next section.

Coframes

A moving frame determines a dual frame or coframe of the cotangent bundle over U, which is sometimes also called a moving frame. This is a n-tuple of smooth 1-forms

θ1, θ2, …, θn

which are linearly independent at each point q in U. Conversely, given such a coframe, there is a unique moving frame e1, e2, …, en which is dual to it, i.e., satisfies the duality relation θi(ej) = δij, where δij is the Kronecker delta function on U.

If is a coordinate system on U, as in the preceding section, then each covector field θi can be expressed as a linear combination of the coordinate covector fields :

where each is a function on U. Since , the two coordinate expressions above combine to yield ; in terms of matrices, this just says that and are inverses of each other.

In the setting of classical mechanics, when working with canonical coordinates, the canonical coframe is given by the tautological one-form. Intuitively, it relates the velocities of a mechanical system (given by vector fields on the tangent bundle of the coordinates) to the corresponding momenta of the system (given by vector fields in the cotangent bundle; i.e. given by forms). The tautological one-form is a special case of the more general solder form, which provides a (co-)frame field on a general fiber bundle.

Uses

Moving frames are important in general relativity, where there is no privileged way of extending a choice of frame at an event p (a point in spacetime, which is a manifold of dimension four) to nearby points, and so a choice must be made. In contrast in special relativity, M is taken to be a vector space V (of dimension four). In that case a frame at a point p can be translated from p to any other point q in a well-defined way. Broadly speaking, a moving frame corresponds to an observer, and the distinguished frames in special relativity represent inertial observers.

In relativity and in Riemannian geometry, the most useful kind of moving frames are the orthogonal and orthonormal frames , that is, frames consisting of orthogonal (unit) vectors at each point. At a given point p a general frame may be made orthonormal by orthonormalization; in fact this can be done smoothly, so that the existence of a moving frame implies the existence of a moving orthonormal frame.

Further details

A moving frame always exists locally, i.e., in some neighbourhood U of any point p in M; however, the existence of a moving frame globally on M requires topological conditions. For example when M is a circle, or more generally a torus, such frames exist; but not when M is a 2-sphere. A manifold that does have a global moving frame is called parallelizable . Note for example how the unit directions of latitude and longitude on the Earth's surface break down as a moving frame at the north and south poles.

The method of moving frames of Élie Cartan is based on taking a moving frame that is adapted to the particular problem being studied. For example, given a curve in space, the first three derivative vectors of the curve can in general define a frame at a point of it (cf. torsion tensor for a quantitative description – it is assumed here that the torsion is not zero). In fact, in the method of moving frames, one more often works with coframes rather than frames. More generally, moving frames may be viewed as sections of principal bundles over open sets U. The general Cartan method exploits this abstraction using the notion of a Cartan connection.

Atlases

In many cases, it is impossible to define a single frame of reference that is valid globally. To overcome this, frames are commonly pieced together to form an atlas, thus arriving at the notion of a local frame . In addition, it is often desirable to endow these atlases with a smooth structure, so that the resulting frame fields are differentiable.

Generalizations

Although this article constructs the frame fields as a coordinate system on the tangent bundle of a manifold, the general ideas move over easily to the concept of a vector bundle, which is a manifold endowed with a vector space at each point, that vector space being arbitrary, and not in general related to the tangent bundle.

Applications

The principal axes of rotation in space Flight dynamics with text.png
The principal axes of rotation in space

Aircraft maneuvers can be expressed in terms of the moving frame (Aircraft principal axes) when described by the pilot.

See also

Notes

  1. 1 2 Chern 1985
  2. D. J. Struik, Lectures on classical differential geometry, p. 18
  3. 1 2 3 Griffiths 1974
  4. "Affine frame" Proofwiki.org
  5. See Cartan (1983) 9.I; Appendix 2 (by Hermann) for the bundle of tangent frames. Fels and Olver (1998) for the case of more general fibrations. Griffiths (1974) for the case of frames on the tautological principal bundle of a homogeneous space.

Related Research Articles

In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, , equipped with a closed nondegenerate differential 2-form , called the symplectic form. The study of symplectic manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical mechanics as the cotangent bundles of manifolds. For example, in the Hamiltonian formulation of classical mechanics, which provides one of the major motivations for the field, the set of all possible configurations of a system is modeled as a manifold, and this manifold's cotangent bundle describes the phase space of the system.

Frame bundle

In mathematics, a frame bundle is a principal fiber bundle F(E) associated to any vector bundle E. The fiber of F(E) over a point x is the set of all ordered bases, or frames, for Ex. The general linear group acts naturally on F(E) via a change of basis, giving the frame bundle the structure of a principal GL(k, R)-bundle.

In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the geometry of the principal bundle is tied to the geometry of the base manifold using a solder form. Cartan connections describe the geometry of manifolds modelled on homogeneous spaces.

Contact geometry

In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus.

This is a glossary of terms specific to differential geometry and differential topology. The following three glossaries are closely related:

Affine connection Construct allowing differentiation of tangent vector fields of manifolds

In differential geometry, an affine connection is a geometric object on a smooth manifold which connects nearby tangent spaces, so it permits tangent vector fields to be differentiated as if they were functions on the manifold with values in a fixed vector space. Connections are among the simplest methods of defining differentiation of the sections of vector bundles.

Frenet–Serret formulas

In differential geometry, the Frenet–Serret formulas describe the kinematic properties of a particle moving along a continuous, differentiable curve in three-dimensional Euclidean space R3, or the geometric properties of the curve itself irrespective of any motion. More specifically, the formulas describe the derivatives of the so-called tangent, normal, and binormal unit vectors in terms of each other. The formulas are named after the two French mathematicians who independently discovered them: Jean Frédéric Frenet, in his thesis of 1847, and Joseph Alfred Serret, in 1851. Vector notation and linear algebra currently used to write these formulas were not yet in use at the time of their discovery.

In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms.

In mathematics, the Maurer–Cartan form for a Lie group G is a distinguished differential one-form on G that carries the basic infinitesimal information about the structure of G. It was much used by Élie Cartan as a basic ingredient of his method of moving frames, and bears his name together with that of Ludwig Maurer.

In differential geometry, especially the theory of space curves, the Darboux vector is the angular velocity vector of the Frenet frame of a space curve. It is named after Gaston Darboux who discovered it. It is also called angular momentum vector, because it is directly proportional to angular momentum.

In differential geometry, a G-structure on an n-manifold M, for a given structure group G, is a principal G-subbundle of the tangent frame bundle FM of M.

Principal curvature Maximal and minimal curvature at a point of a surface

In differential geometry, the two principal curvatures at a given point of a surface are the eigenvalues of the shape operator at the point. They measure how the surface bends by different amounts in different directions at that point.

Torsion tensor (1,2)-tensor field associated to an affine connection; characterizes "twist" of geodesics; if nonzero, geodesics will be helices

In differential geometry, the notion of torsion is a manner of characterizing a twist or screw of a moving frame around a curve. The torsion of a curve, as it appears in the Frenet–Serret formulas, for instance, quantifies the twist of a curve about its tangent vector as the curve evolves. In the geometry of surfaces, the geodesic torsion describes how a surface twists about a curve on the surface. The companion notion of curvature measures how moving frames "roll" along a curve "without twisting".

In mathematics, more precisely in differential geometry, a soldering of a fiber bundle to a smooth manifold is a manner of attaching the fibers to the manifold in such a way that they can be regarded as tangent. Intuitively, soldering expresses in abstract terms the idea that a manifold may have a point of contact with a certain model Klein geometry at each point. In extrinsic differential geometry, the soldering is simply expressed by the tangency of the model space to the manifold. In intrinsic geometry, other techniques are needed to express it. Soldering was introduced in this general form by Charles Ehresmann in 1950.

Tangential and normal components

In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector. Similarly a vector at a point on a surface can be broken down the same way.

In the differential geometry of surfaces, a Darboux frame is a natural moving frame constructed on a surface. It is the analog of the Frenet–Serret frame as applied to surface geometry. A Darboux frame exists at any non-umbilic point of a surface embedded in Euclidean space. It is named after French mathematician Jean Gaston Darboux.

In mathematics, the Riemannian connection on a surface or Riemannian 2-manifold refers to several intrinsic geometric structures discovered by Tullio Levi-Civita, Élie Cartan and Hermann Weyl in the early part of the twentieth century: parallel transport, covariant derivative and connection form. These concepts were put in their current form with principal bundles only in the 1950s. The classical nineteenth century approach to the differential geometry of surfaces, due in large part to Carl Friedrich Gauss, has been reworked in this modern framework, which provides the natural setting for the classical theory of the moving frame as well as the Riemannian geometry of higher-dimensional Riemannian manifolds. This account is intended as an introduction to the theory of connections.

References