Neuropeptide VF precursor

Last updated
Neuropeptide VF precursor
Identifiers
SymbolNPVF
Alt. symbolsRPFP
HGNC 13782

Neuropeptide VF precursor, also known as pro-FMRFamide-related neuropeptide VF or RFamide-related peptide precursor, is a propeptide that in mammals is encoded by the NPVF (or RPFP) gene. The NPVF gene, and thus the propeptide, are expressed in neurons in the mediobasal hypothalamus. [1] The propeptide is cleaved to form three other peptides, which are: [2] [3]

Contents

NPSF and NPVF, originally referred to as the RFamide-related peptides RFRP-1 and RFRP-3, respectively, [4] are the mammalian homologs of the avian neuropeptide gonadotropin-inhibitory hormone (GnIH). [2] The mammalian NPVF and avian GnIH genes, along with their aforementioned peptide products, were discovered concurrently in 2000. [1] [2] Similarly to the avian GnIH neuropeptide, NPSF and NPVF have been found to potently inhibit gonadotropin secretion. [5] Moreover, a potent and selective antagonist of the NPFF receptors, RF9, has been reported to possess "very strong" gonadotropin-releasing effects in vivo in male and female mice. [6]

See also

Related Research Articles

Luteinizing hormone is a hormone produced by gonadotropic cells in the anterior pituitary gland. The production of LH is regulated by gonadotropin-releasing hormone (GnRH) from the hypothalamus. In females, an acute rise of LH triggers ovulation and development of the corpus luteum. In males, where LH had also been called interstitial cell–stimulating hormone (ICSH), it stimulates Leydig cell production of testosterone. It acts synergistically with follicle-stimulating hormone (FSH).

Gonadotropin-releasing hormone Mammalian protein found in Homo sapiens

Gonadotropin-releasing hormone (GnRH) is a releasing hormone responsible for the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior pituitary. GnRH is a tropic peptide hormone synthesized and released from GnRH neurons within the hypothalamus. The peptide belongs to gonadotropin-releasing hormone family. It constitutes the initial step in the hypothalamic–pituitary–gonadal axis.

Arcuate nucleus

The arcuate nucleus of the hypothalamus is an aggregation of neurons in the mediobasal hypothalamus, adjacent to the third ventricle and the median eminence. The arcuate nucleus includes several important and diverse populations of neurons that help mediate different neuroendocrine and physiological functions, including neuroendocrine neurons, centrally projecting neurons, and astrocytes. The populations of neurons found in the arcuate nucleus are based on the hormones they secrete or interact with and are responsible for hypothalamic function, such as regulating hormones released from the pituitary gland or secreting their own hormones. Neurons in this region are also responsible for integrating information and providing inputs to other nuclei in the hypothalamus or inputs to areas outside this region of the brain. These neurons, generated from the ventral part of the periventricular epithelium during embryonic development, locate dorsally in the hypothalamus, becoming part of the ventromedial hypothalamic region. The function of the arcuate nucleus relies on its diversity of neurons, but its central role is involved in homeostasis. The arcuate nucleus provides many physiological roles involved in feeding, metabolism, fertility, and cardiovascular regulation.

Neuropeptide

Neuropeptides are chemical messengers made up of small chains of amino acids that are synthesized and released by neurons. Neuropeptides typically bind to G protein-coupled receptors (GPCRs) to modulate neural activity and other tissues like the gut, muscles, and heart.

Releasing hormones and inhibiting hormones are hormones whose main purpose is to control the release of other hormones, either by stimulating or inhibiting their release. They are also called liberins and statins (respectively), or releasing factors and inhibiting factors. The examples are hypothalamic-pituitary hormones that can be classified from several viewpoints: they are hypothalamic hormones, they are hypophysiotropic hormones, and they are tropic hormones.

FMRFamide Chemical compound

FMRFamide (H-Phe-Met-Arg-Phe-NH2) is a neuropeptide from a broad family of FMRFamide-related peptides (FaRPs) all sharing an -RFamide sequence at their C-terminus. First identified in Hard clam, it is thought to play an important role in cardiac activity regulation. Several FMRFamide related peptides are known, regulating various cellular functions and possessing pharmacological actions, such as anti-opiate effects. In Mercenaria mercenaria, FMRFamide has been isolated and demonstrated to increase both the force and frequency of the heartbeat through a biochemical pathway that is thought to involve the increase of cytoplasmic cAMP in the ventricular region.

The periventricular nucleus is a thin sheet of small neurons located in the wall of the third ventricle, a composite structure of the hypothalamus. It functions in analgesia.

Signaling peptide receptor is a type of receptor which binds one or more signaling peptides or signaling proteins.

Kisspeptin

Kisspeptins are proteins encoded by the KISS1 gene in humans. Kisspeptins are ligands of the G-protein coupled receptor, GPR54. Kiss1 was originally identified as a human metastasis suppressor gene that has the ability to suppress melanoma and breast cancer metastasis. Kisspeptin-GPR54 signaling has an important role in initiating secretion of gonadotropin-releasing hormone (GnRH) at puberty, the extent of which is an area of ongoing research. Gonadotropin-releasing hormone is released from the hypothalamus to act on the anterior pituitary triggering the release of luteinizing hormone (LH), and follicle stimulating hormone (FSH). These gonadotropic hormones lead to sexual maturation and gametogenesis. Disrupting GPR54 signaling can cause hypogonadotrophic hypogonadism in rodents and humans. The Kiss1 gene is located on chromosome 1. It is transcribed in the brain, adrenal gland, and pancreas.

KiSS1-derived peptide receptor

The KiSS1-derived peptide receptor is a G protein-coupled receptor which binds the peptide hormone kisspeptin (metastin). Kisspeptin is encoded by the metastasis suppressor gene KISS1, which is expressed in a variety of endocrine and gonadal tissues. Activation of the kisspeptin receptor is linked to the phospholipase C and inositol trisphosphate second messenger cascades inside the cell.

The neuropeptide FF receptors are members of the G-protein coupled receptor superfamily of integral membrane proteins which bind the pain modulatory neuropeptides AF and FF. The Neuropeptide FF receptor family is a member of the G protein-coupled receptor superfamily containing two subtypes, NPFF1 and NPFF2, which exhibit a high affinity for Neuropeptide FF (NPFF) peptides. NPFF1 is broadly distributed in the central nervous system with the highest levels found in the limbic system and the hypothalamus. NPFF2 is present in high density, particularly in mammals in the superficial layers of the spinal cord where it is involved in nociception and modulation of opioid functions. These receptors participate to the modulation of opioid receptor function in the brain and spinal cord, and can either reduce or increase opioid receptor function depending which tissue they are released in, reflecting a complex role for neuropeptide FF in pain responses.

Pyroglutamylated RFamide peptide receptor

Pyroglutamylated RFamide peptide receptor also known as orexigenic neuropeptide QRFP receptor or G-protein coupled receptor 103 (GPR103) is a protein that in humans is encoded by the QRFPR gene.

GNRH2

Progonadoliberin-2 is a protein that in humans is encoded by the GNRH2 gene.

Neuropeptide FF

NPFF Neuropeptide FF (FLFQPQRFa) is a mammalian amidated neuropeptide originally isolated from bovine brain and characterized as a pain-modulating peptide, with anti-opioid activity on morphine-induced analgesia.

The hormone of gonadotropins secreted by the anterior hypophyse gland effects on the gonads and play a crucial role in the process of gonadal development and function in vertebrates. In birds and mammals, luteinizinghormone (LH) regulates sex steroid production as well as ovulation, whereas follicle stimulating hormone (FSH) promotes spermatogenesis and ovarian follicle maturation. Since the isolation of gonadotropin-releasing hormone (GnRH), a hypothalamic decapeptide, from mammalian brain in the early 1970s, several other GnRHs have been identified in the brains of other vertebrates. Based on extensive studies in vertebrates, it was generally believed that GnRH is the only hypothalamic regulator of the release of pituitary gonadotropins. Some neurochemicals and peripheral hormones [e.g.gamma-aminobutyric acid (GABA), opiates, gonadal sex steroids, inhibin] can modulate gonadotropin release, but GnRH was considered to have no hypothalamic antagonist.

Sufugolix

Sufugolix (INN, BAN) (developmental code name TAK-013) is a non-peptide, orally-active, selective antagonist of the gonadotropin-releasing hormone receptor (GnRHR) (IC50 = 0.1 and 0.06 nM for affinity and in vitro inhibition, respectively). It was under development by Takeda for the treatment of endometriosis and uterine leiomyoma and reached phase II clinical trials for both of these indications, but was subsequently discontinued. It seems to have been supplanted by relugolix (TAK-385), which is also under development by Takeda for the treatment of these conditions and has a more favorable drug profile (including reduced cytochrome P450 inhibition and improved in vivo GnRHR antagonistic activity) in comparison.

The RFamide peptide family, or the RFamide-related peptides (RFRPs), are a family of neuropeptides. They are characterized by the possession of an Arg-Phe-NH2 motif at their C-terminal extremities.

Gonadotropin-releasing hormone modulator

A GnRH modulator, or GnRH receptor modulator, also known as an LHRH modulator or LHRH receptor modulator, is a type of medication which modulates the GnRH receptor, the biological target of the hypothalamic hormone gonadotropin-releasing hormone. They include GnRH agonists and GnRH antagonists. These medications may be GnRH analogues like leuprorelin and cetrorelix – peptides that are structurally related to GnRH – or small-molecules like elagolix and relugolix, which are structurally distinct from and unrelated to GnRH analogues.

Gonadotropin-inhibitory hormone (GnIH) is a RFamide-related peptide coded by the NPVF gene in mammals.

References

  1. 1 2 Jae Young Seong; Hubert Vaudry (7 November 2014). Neuropeptide GPCRs in neuroendocrinology. Frontiers E-books. pp. 226–. ISBN   978-2-88919-267-0.
  2. 1 2 3 Hinuma S, Shintani Y, Fukusumi S, Iijima N, Matsumoto Y, Hosoya M, Fujii R, Watanabe T, Kikuchi K, Terao Y, Yano T, Yamamoto T, Kawamata Y, Habata Y, Asada M, Kitada C, Kurokawa T, Onda H, Nishimura O, Tanaka M, Ibata Y, Fujino M (2000). "New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals". Nat. Cell Biol. 2 (10): 703–8. doi:10.1038/35036326. PMID   11025660. S2CID   2580390.
  3. Gouardères C, Mazarguil H, Mollereau C, Chartrel N, Leprince J, Vaudry H, Zajac JM (2007). "Functional differences between NPFF1 and NPFF2 receptor coupling: high intrinsic activities of RFamide-related peptides on stimulation of [35S]GTPgammaS binding". Neuropharmacology. 52 (2): 376–86. doi:10.1016/j.neuropharm.2006.07.034. PMID   17011599. S2CID   140207990.
  4. Murakami M, Matsuzaki T, Iwasa T, Yasui T, Irahara M, Osugi T, Tsutsui K (2008). "Hypophysiotropic role of RFamide-related peptide-3 in the inhibition of LH secretion in female rats". J. Endocrinol. 199 (1): 105–12. doi: 10.1677/JOE-08-0197 . PMID   18653621.
  5. Clarke IJ, Qi Y, Puspita Sari I, Smith JT (2009). "Evidence that RF-amide related peptides are inhibitors of reproduction in mammals". Front Neuroendocrinol. 30 (3): 371–8. doi:10.1016/j.yfrne.2009.04.001. PMID   19362107. S2CID   7890470.
  6. Pineda R, Garcia-Galiano D, Sanchez-Garrido MA, Romero M, Ruiz-Pino F, Aguilar E, Dijcks FA, Blomenröhr M, Pinilla L, van Noort PI, Tena-Sempere M (2010). "Characterization of the potent gonadotropin-releasing activity of RF9, a selective antagonist of RF-amide-related peptides and neuropeptide FF receptors: physiological and pharmacological implications". Endocrinology. 151 (4): 1902–13. doi: 10.1210/en.2009-1259 . PMID   20160130.

Further reading