Spintronics

Last updated

Spintronics (a portmanteau meaning spin transport electronics [1] [2] [3] ), also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. [4] The field of spintronics concerns spin-charge coupling in metallic systems; the analogous effects in insulators fall into the field of multiferroics.

Contents

Spintronics fundamentally differs from traditional electronics in that, in addition to charge state, electron spins are used as a further degree of freedom, with implications in the efficiency of data storage and transfer. Spintronic systems are most often realised in dilute magnetic semiconductors (DMS) and Heusler alloys and are of particular interest in the field of quantum computing and neuromorphic computing.

History

Spintronics emerged from discoveries in the 1980s concerning spin-dependent electron transport phenomena in solid-state devices. This includes the observation of spin-polarized electron injection from a ferromagnetic metal to a normal metal by Johnson and Silsbee (1985) [5] and the discovery of giant magnetoresistance independently by Albert Fert et al. [6] and Peter Grünberg et al. (1988). [7] The origin of spintronics can be traced to the ferromagnet/superconductor tunneling experiments pioneered by Meservey and Tedrow and initial experiments on magnetic tunnel junctions by Julliere in the 1970s. [8] The use of semiconductors for spintronics began with the theoretical proposal of a spin field-effect-transistor by Datta and Das in 1990 [9] and of the electric dipole spin resonance by Rashba in 1960. [10]

Theory

The spin of the electron is an intrinsic angular momentum that is separate from the angular momentum due to its orbital motion. The magnitude of the projection of the electron's spin along an arbitrary axis is , implying that the electron acts as a fermion by the spin-statistics theorem. Like orbital angular momentum, the spin has an associated magnetic moment, the magnitude of which is expressed as

.

In a solid, the spins of many electrons can act together to affect the magnetic and electronic properties of a material, for example endowing it with a permanent magnetic moment as in a ferromagnet.

In many materials, electron spins are equally present in both the up and the down state, and no transport properties are dependent on spin. A spintronic device requires generation or manipulation of a spin-polarized population of electrons, resulting in an excess of spin up or spin down electrons. The polarization of any spin dependent property X can be written as

.

A net spin polarization can be achieved either through creating an equilibrium energy split between spin up and spin down. Methods include putting a material in a large magnetic field (Zeeman effect), the exchange energy present in a ferromagnet or forcing the system out of equilibrium. The period of time that such a non-equilibrium population can be maintained is known as the spin lifetime, .

In a diffusive conductor, a spin diffusion length can be defined as the distance over which a non-equilibrium spin population can propagate. Spin lifetimes of conduction electrons in metals are relatively short (typically less than 1 nanosecond). An important research area is devoted to extending this lifetime to technologically relevant timescales.

A plot showing a spin up, spin down, and the resulting spin polarized population of electrons. Inside a spin injector, the polarization is constant, while outside the injector, the polarization decays exponentially to zero as the spin up and down populations go to equilibrium. Spin Injection.svg
A plot showing a spin up, spin down, and the resulting spin polarized population of electrons. Inside a spin injector, the polarization is constant, while outside the injector, the polarization decays exponentially to zero as the spin up and down populations go to equilibrium.

The mechanisms of decay for a spin polarized population can be broadly classified as spin-flip scattering and spin dephasing. Spin-flip scattering is a process inside a solid that does not conserve spin, and can therefore switch an incoming spin up state into an outgoing spin down state. Spin dephasing is the process wherein a population of electrons with a common spin state becomes less polarized over time due to different rates of electron spin precession. In confined structures, spin dephasing can be suppressed, leading to spin lifetimes of milliseconds in semiconductor quantum dots at low temperatures.

Superconductors can enhance central effects in spintronics such as magnetoresistance effects, spin lifetimes and dissipationless spin-currents. [11] [12]

The simplest method of generating a spin-polarised current in a metal is to pass the current through a ferromagnetic material. The most common applications of this effect involve giant magnetoresistance (GMR) devices. A typical GMR device consists of at least two layers of ferromagnetic materials separated by a spacer layer. When the two magnetization vectors of the ferromagnetic layers are aligned, the electrical resistance will be lower (so a higher current flows at constant voltage) than if the ferromagnetic layers are anti-aligned. This constitutes a magnetic field sensor.

Two variants of GMR have been applied in devices: (1) current-in-plane (CIP), where the electric current flows parallel to the layers and (2) current-perpendicular-to-plane (CPP), where the electric current flows in a direction perpendicular to the layers.

Other metal-based spintronics devices:

Spintronic-logic devices

Non-volatile spin-logic devices to enable scaling are being extensively studied. [13] Spin-transfer, torque-based logic devices that use spins and magnets for information processing have been proposed. [14] [15] These devices are part of the ITRS exploratory road map. Logic-in memory applications are already in the development stage. [16] [17] A 2017 review article can be found in Materials Today. [4]

A generalized circuit theory for spintronic integrated circuits has been proposed [18] so that the physics of spin transport can be utilized by SPICE developers and subsequently by circuit and system designers for the exploration of spintronics for “beyond CMOS computing.”

Applications

Read heads of magnetic hard drives are based on the GMR or TMR effect.

Motorola developed a first-generation 256  kb magnetoresistive random-access memory (MRAM) based on a single magnetic tunnel junction and a single transistor that has a read/write cycle of under 50 nanoseconds. [19] Everspin has since developed a 4  Mb version. [20] Two second-generation MRAM techniques are in development: thermal-assisted switching (TAS) [21] and spin-transfer torque (STT). [22]

Another design, racetrack memory, a novel memory architecture proposed by Dr. Stuart S. P. Parkin, encodes information in the direction of magnetization between domain walls of a ferromagnetic wire.

In 2012, persistent spin helices of synchronized electrons were made to persist for more than a nanosecond, a 30-fold increase over earlier efforts, and longer than the duration of a modern processor clock cycle. [23]

Semiconductor-based spintronic devices

Doped semiconductor materials display dilute ferromagnetism. In recent years, dilute magnetic oxides (DMOs) including ZnO based DMOs and TiO2-based DMOs have been the subject of numerous experimental and computational investigations. [24] [25] Non-oxide ferromagnetic semiconductor sources (like manganese-doped gallium arsenide (Ga,Mn)As ), [26] increase the interface resistance with a tunnel barrier, [27] or using hot-electron injection. [28]

Spin detection in semiconductors has been addressed with multiple techniques:

The latter technique was used to overcome the lack of spin-orbit interaction and materials issues to achieve spin transport in silicon. [33]

Because external magnetic fields (and stray fields from magnetic contacts) can cause large Hall effects and magnetoresistance in semiconductors (which mimic spin-valve effects), the only conclusive evidence of spin transport in semiconductors is demonstration of spin precession and dephasing in a magnetic field non-collinear to the injected spin orientation, called the Hanle effect.

Applications

Applications using spin-polarized electrical injection have shown threshold current reduction and controllable circularly polarized coherent light output. [34] Examples include semiconductor lasers. Future applications may include a spin-based transistor having advantages over MOSFET devices such as steeper sub-threshold slope.

Magnetic-tunnel transistor: The magnetic-tunnel transistor with a single base layer [35] has the following terminals:

The magnetocurrent (MC) is given as:

And the transfer ratio (TR) is

MTT promises a highly spin-polarized electron source at room temperature.

Storage media

Antiferromagnetic storage media have been studied as an alternative to ferromagnetism, [36] especially since with antiferromagnetic material the bits can be stored as well as with ferromagnetic material. Instead of the usual definition 0 ↔ 'magnetisation upwards', 1 ↔ 'magnetisation downwards', the states can be, e.g., 0 ↔ 'vertically-alternating spin configuration' and 1 ↔ 'horizontally-alternating spin configuration'. [37] ).

The main advantages of antiferromagnetic material are:

Research is being done into how to read and write information to antiferromagnetic spintronics as their net zero magnetization makes this difficult compared to conventional ferromagnetic spintronics. In modern MRAM, detection and manipulation of ferromagnetic order by magnetic fields has largely been abandoned in favor of more efficient and scalable reading and writing by electrical current. Methods of reading and writing information by current rather than fields are also being investigated in antiferromagnets as fields are ineffective anyway. Writing methods currently being investigated in antiferromagnets are through spin-transfer torque and spin-orbit torque from the spin Hall effect and the Rashba effect. Reading information in antiferromagnets via magnetoresistance effects such as tunnel magnetoresistance is also being explored. [40]

See also

Related Research Articles

Magnetoresistance is the tendency of a material to change the value of its electrical resistance in an externally-applied magnetic field. There are a variety of effects that can be called magnetoresistance. Some occur in bulk non-magnetic metals and semiconductors, such as geometrical magnetoresistance, Shubnikov–de Haas oscillations, or the common positive magnetoresistance in metals. Other effects occur in magnetic metals, such as negative magnetoresistance in ferromagnets or anisotropic magnetoresistance (AMR). Finally, in multicomponent or multilayer systems, giant magnetoresistance (GMR), tunnel magnetoresistance (TMR), colossal magnetoresistance (CMR), and extraordinary magnetoresistance (EMR) can be observed.

Magnetoresistive random-access memory (MRAM) is a type of non-volatile random-access memory which stores data in magnetic domains. Developed in the mid-1980s, proponents have argued that magnetoresistive RAM will eventually surpass competing technologies to become a dominant or even universal memory. Currently, memory technologies in use such as flash RAM and DRAM have practical advantages that have so far kept MRAM in a niche role in the market.

<span class="mw-page-title-main">Tunnel magnetoresistance</span> Magnetic effect in insulators between ferromagnets

Tunnel magnetoresistance (TMR) is a magnetoresistive effect that occurs in a magnetic tunnel junction (MTJ), which is a component consisting of two ferromagnets separated by a thin insulator. If the insulating layer is thin enough, electrons can tunnel from one ferromagnet into the other. Since this process is forbidden in classical physics, the tunnel magnetoresistance is a strictly quantum mechanical phenomenon, and lies in the study of spintronics.

Colossal magnetoresistance (CMR) is a property of some materials, mostly manganese-based perovskite oxides, that enables them to dramatically change their electrical resistance in the presence of a magnetic field. The magnetoresistance of conventional materials enables changes in resistance of up to 5%, but materials featuring CMR may demonstrate resistance changes by orders of magnitude.

<span class="mw-page-title-main">Giant magnetoresistance</span> Phenomenom involving the change of conductivity in metallic layers

Giant magnetoresistance (GMR) is a quantum mechanical magnetoresistance effect observed in multilayers composed of alternating ferromagnetic and non-magnetic conductive layers. The 2007 Nobel Prize in Physics was awarded to Albert Fert and Peter Grünberg for the discovery of GMR, which also sets the foundation for the study of spintronics.

Magnetic semiconductors are semiconductor materials that exhibit both ferromagnetism and useful semiconductor properties. If implemented in devices, these materials could provide a new type of control of conduction. Whereas traditional electronics are based on control of charge carriers, practical magnetic semiconductors would also allow control of quantum spin state. This would theoretically provide near-total spin polarization, which is an important property for spintronics applications, e.g. spin transistors.

<span class="mw-page-title-main">Albert Fert</span> French physicist (born 1938)

Albert Fert is a French physicist and one of the discoverers of giant magnetoresistance which brought about a breakthrough in gigabyte hard disks. Currently, he is an emeritus professor at Paris-Saclay University in Orsay, scientific director of a joint laboratory between the Centre national de la recherche scientifique and Thales Group, and adjunct professor at Michigan State University. He was awarded the 2007 Nobel Prize in Physics together with Peter Grünberg.

In particle physics, spin polarization is the degree to which the spin, i.e., the intrinsic angular momentum of elementary particles, is aligned with a given direction. This property may pertain to the spin, hence to the magnetic moment, of conduction electrons in ferromagnetic metals, such as iron, giving rise to spin-polarized currents. It may refer to (static) spin waves, preferential correlation of spin orientation with ordered lattices.

Exchange bias or exchange anisotropy occurs in bilayers of magnetic materials where the hard magnetization behavior of an antiferromagnetic thin film causes a shift in the soft magnetization curve of a ferromagnetic film. The exchange bias phenomenon is of tremendous utility in magnetic recording, where it is used to pin the state of the readback heads of hard disk drives at exactly their point of maximum sensitivity; hence the term "bias."

Spin pumping is the dynamical generation of pure spin current by the coherent precession of magnetic moments, which can efficiently inject spin from a magnetic material into an adjacent non-magnetic material. The non-magnetic material usually hosts the spin Hall effect that can convert the injected spin current into a charge voltage easy to detect. A spin pumping experiment typically requires electromagnetic irradiation to induce magnetic resonance, which converts energy and angular momenta from electromagnetic waves to magnetic dynamics and then to electrons, enabling the electronic detection of electromagnetic waves. The device operation of spin pumping can be regarded as the spintronic analog of a battery.

The spin Hall effect (SHE) is a transport phenomenon predicted by Russian physicists Mikhail I. Dyakonov and Vladimir I. Perel in 1971. It consists of the appearance of spin accumulation on the lateral surfaces of an electric current-carrying sample, the signs of the spin directions being opposite on the opposing boundaries. In a cylindrical wire, the current-induced surface spins will wind around the wire. When the current direction is reversed, the directions of spin orientation is also reversed.

Spin-polarized scanning tunneling microscopy (SP-STM) is a type of scanning tunneling microscope (STM) that can provide detailed information of magnetic phenomena on the single-atom scale additional to the atomic topography gained with STM. SP-STM opened a novel approach to static and dynamic magnetic processes as precise investigations of domain walls in ferromagnetic and antiferromagnetic systems, as well as thermal and current-induced switching of nanomagnetic particles.

Gallium manganese arsenide, chemical formula (Ga,Mn)As is a magnetic semiconductor. It is based on the world's second most commonly used semiconductor, gallium arsenide,, and readily compatible with existing semiconductor technologies. Differently from other dilute magnetic semiconductors, such as the majority of those based on II-VI semiconductors, it is not paramagnetic but ferromagnetic, and hence exhibits hysteretic magnetization behavior. This memory effect is of importance for the creation of persistent devices. In (Ga,Mn)As, the manganese atoms provide a magnetic moment, and each also acts as an acceptor, making it a p-type material. The presence of carriers allows the material to be used for spin-polarized currents. In contrast, many other ferromagnetic magnetic semiconductors are strongly insulating and so do not possess free carriers. (Ga,Mn)As is therefore a candidate material for spintronic devices but it is likely to remain only a testbed for basic research as its Curie temperature could only be raised up to approximatelly 200 K.

Discovered only as recently as 2006 by C.D. Stanciu and F. Hansteen and published in Physical Review Letters, this effect is generally called all-optical magnetization reversal. This magnetization reversal technique refers to a method of reversing magnetization in a magnet simply by circularly polarized light and where the magnetization direction is controlled by the light helicity. In particular, the direction of the angular momentum of the photons would set the magnetization direction without the need of an external magnetic field. In fact, this process could be seen as similar to magnetization reversal by spin injection. The only difference is that now, the angular momentum is supplied by the circularly polarized photons instead of the polarized electrons.

Spin engineering describes the control and manipulation of quantum spin systems to develop devices and materials. This includes the use of the spin degrees of freedom as a probe for spin based phenomena. Because of the basic importance of quantum spin for physical and chemical processes, spin engineering is relevant for a wide range of scientific and technological applications. Current examples range from Bose–Einstein condensation to spin-based data storage and reading in state-of-the-art hard disk drives, as well as from powerful analytical tools like nuclear magnetic resonance spectroscopy and electron paramagnetic resonance spectroscopy to the development of magnetic molecules as qubits and magnetic nanoparticles. In addition, spin engineering exploits the functionality of spin to design materials with novel properties as well as to provide a better understanding and advanced applications of conventional material systems. Many chemical reactions are devised to create bulk materials or single molecules with well defined spin properties, such as a single-molecule magnet. The aim of this article is to provide an outline of fields of research and development where the focus is on the properties and applications of quantum spin.

Spin Hall magnetoresistance (SMR) is a transport phenomenon that is found in some electrical conductors that have at least one surface in direct contact with another magnetic material due to changes in the spin current that are present in metals and semiconductors with a large spin Hall angle. It is most easily detected when the magnetic material is an insulator which eliminates other magnetically sensitive transport effects arising from conduction in the magnetic material.

<span class="mw-page-title-main">Spinterface</span>

Spinterface is a term coined to indicate an interface between a ferromagnet and an organic semiconductor. This is a widely investigated topic in molecular spintronics, since the role of interfaces plays a huge part in the functioning of a device. In particular, spinterfaces are widely studied in the scientific community because of their hybrid organic/inorganic composition. In fact, the hybridization between the metal and the organic material can be controlled by acting on the molecules, which are more responsive to electrical and optical stimuli than metals. This gives rise to the possibility of efficiently tuning the magnetic properties of the interface at the atomic scale.

<span class="mw-page-title-main">Bipolar magnetic semiconductor</span>

Bipolar magnetic semiconductors (BMSs) are a special class of magnetic semiconductors characterized by a unique electronic structure, where valence band maximum (VBM) and conduction band minimum (CBM) are fully spin polarized in the opposite spin direction. BMSs can be described by three energy gaps, the spin-flip gap Δ2 in valence band (VB), band gap Δ1 and spin-flip gap Δ3 in conduction band (CB). Up to now, bipolar magnetic semiconductors, together with half-metal and spin gapless semiconductor, have been viewed as three important classes of spintronic materials.

Bernard Dieny is a research scientist and an entrepreneur. He is Chief Scientist at SPINTEC, a CEA/CNRS/UGA research laboratory that he co-founded in 2002 in Grenoble, France. He is also co-founder of two startup companies: Crocus Technology on MRAM and magnetic sensors in 2006 and EVADERIS on circuits design in 2014.

<span class="mw-page-title-main">Jeremy Levy</span> American physicist

Jeremy Levy is an American physicist who is a Distinguished Professor of Physics at the University of Pittsburgh.

References

  1. Wolf, S. A.; Chtchelkanova, A. Y.; Treger, D. M. (2006). "Spintronics—A retrospective and perspective". IBM Journal of Research and Development. 50: 101–110. doi:10.1147/rd.501.0101.
  2. "Physics Profile: "Stu Wolf: True D! Hollywood Story"".
  3. Spintronics: A Spin-Based Electronics Vision for the Future. Sciencemag.org (16 November 2001). Retrieved on 21 October 2013.
  4. 1 2 Bhatti, S.; et al. (2017). "Spintronics based random access memory: a review". Materials Today. 20 (9): 530–548. doi: 10.1016/j.mattod.2017.07.007 . hdl: 10356/146755 .
  5. Johnson, M.; Silsbee, R. H. (1985). "Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals". Physical Review Letters. 55 (17): 1790–1793. Bibcode:1985PhRvL..55.1790J. doi:10.1103/PhysRevLett.55.1790. PMID   10031924.
  6. Baibich, M. N.; Broto, J. M.; Fert, A.; Nguyen Van Dau, F. N.; Petroff, F.; Etienne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. (1988). "Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices" (PDF). Physical Review Letters. 61 (21): 2472–2475. Bibcode:1988PhRvL..61.2472B. doi: 10.1103/PhysRevLett.61.2472 . PMID   10039127.
  7. Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. (1989). "Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange". Physical Review B. 39 (7): 4828–4830. Bibcode:1989PhRvB..39.4828B. doi: 10.1103/PhysRevB.39.4828 . PMID   9948867.
  8. Julliere, M. (1975). "Tunneling between ferromagnetic films". Physics Letters A. 54 (3): 225–226. Bibcode:1975PhLA...54..225J. doi:10.1016/0375-9601(75)90174-7.
  9. Datta, S. & Das, B. (1990). "Electronic analog of the electrooptic modulator". Applied Physics Letters. 56 (7): 665–667. Bibcode:1990ApPhL..56..665D. doi:10.1063/1.102730.
  10. E. I. Rashba, Cyclotron and combined resonances in a perpendicular field, Sov. Phys. Solid State 2, 1109 -1122 (1960)
  11. Linder, Jacob; Robinson, Jason W. A. (2 April 2015). "Superconducting spintronics". Nature Physics. 11 (4): 307–315. arXiv: 1510.00713 . Bibcode:2015NatPh..11..307L. doi:10.1038/nphys3242. ISSN   1745-2473. S2CID   31028550.
  12. Eschrig, Matthias (2011). "Spin-polarized supercurrents for spintronics". Physics Today. 64 (1): 43–49. Bibcode:2011PhT....64a..43E. doi:10.1063/1.3541944.
  13. International Technology Roadmap for Semiconductors
  14. Behin-Aein, B.; Datta, D.; Salahuddin, S.; Datta, S. (2010). "Proposal for an all-spin logic device with built-in memory". Nature Nanotechnology. 5 (4): 266–270. Bibcode:2010NatNa...5..266B. doi:10.1038/nnano.2010.31. PMID   20190748.
  15. Manipatruni, Sasikanth; Nikonov, Dmitri E. and Young, Ian A. (2011) [1112.2746] Circuit Theory for SPICE of Spintronic Integrated Circuits. Arxiv.org. Retrieved on 21 October 2013.
  16. Crocus Partners With Starchip To Develop System-On-Chip Solutions Based on Magnetic-Logic-Unit (MLU) Technology. crocus-technology.com. 8 December 2011
  17. Groundbreaking New Technology for Improving the Reliability of Spintronics Logic Integrated Circuits. Nec.com. 11 June 2012.
  18. S. Manipatruni, D. E. Nikonov and I. A. Young, "Modeling and Design of Spintronic Integrated Circuits," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 12, pp. 2801-2814, Dec. 2012, doi: 10.1109/TCSI.2012.2206465. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6359950&isnumber=6359940
  19. Spintronics. Sigma-Aldrich. Retrieved on 21 October 2013.
  20. Everspin Archived 30 June 2012 at the Wayback Machine . Everspin. Retrieved on 21 October 2013.
  21. Hoberman, Barry. The Emergence of Practical MRAM Archived 21 October 2013 at the Wayback Machine . crocustechnology.com
  22. LaPedus, Mark (18 June 2009) Tower invests in Crocus, tips MRAM foundry deal. eetimes.com
  23. Walser, M.; Reichl, C.; Wegscheider, W. & Salis, G. (2012). "Direct mapping of the formation of a persistent spin helix". Nature Physics. 8 (10): 757. arXiv: 1209.4857 . Bibcode:2012NatPh...8..757W. doi:10.1038/nphys2383. S2CID   119209785.
  24. Assadi, M.H.N; Hanaor, D.A.H (2013). "Theoretical study on copper's energetics and magnetism in TiO2 polymorphs". Journal of Applied Physics. 113 (23): 233913–233913–5. arXiv: 1304.1854 . Bibcode:2013JAP...113w3913A. doi:10.1063/1.4811539. S2CID   94599250.
  25. Ogale, S.B (2010). "Dilute doping, defects, and ferromagnetism in metal oxide systems". Advanced Materials. 22 (29): 3125–3155. Bibcode:2010AdM....22.3125O. doi:10.1002/adma.200903891. PMID   20535732. S2CID   25307693.
  26. Jonker, B.; Park, Y.; Bennett, B.; Cheong, H.; Kioseoglou, G.; Petrou, A. (2000). "Robust electrical spin injection into a semiconductor heterostructure". Physical Review B. 62 (12): 8180. Bibcode:2000PhRvB..62.8180J. doi:10.1103/PhysRevB.62.8180.
  27. Hanbicki, A. T.; Jonker, B. T.; Itskos, G.; Kioseoglou, G.; Petrou, A. (2002). "Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor". Applied Physics Letters. 80 (7): 1240. arXiv: cond-mat/0110059 . Bibcode:2002ApPhL..80.1240H. doi:10.1063/1.1449530. S2CID   119098659.
  28. Jiang, X.; Wang, R.; Van Dijken, S.; Shelby, R.; MacFarlane, R.; Solomon, G.; Harris, J.; Parkin, S. (2003). "Optical Detection of Hot-Electron Spin Injection into GaAs from a Magnetic Tunnel Transistor Source". Physical Review Letters. 90 (25): 256603. Bibcode:2003PhRvL..90y6603J. doi:10.1103/PhysRevLett.90.256603. PMID   12857153.
  29. Kikkawa, J.; Awschalom, D. (1998). "Resonant Spin Amplification in n-Type GaAs". Physical Review Letters. 80 (19): 4313. Bibcode:1998PhRvL..80.4313K. doi:10.1103/PhysRevLett.80.4313.
  30. Jonker, Berend T. Polarized optical emission due to decay or recombination of spin-polarized injected carriers – US Patent 5874749 Archived 12 December 2009 at the Wayback Machine . Issued on 23 February 1999.
  31. Lou, X.; Adelmann, C.; Crooker, S. A.; Garlid, E. S.; Zhang, J.; Reddy, K. S. M.; Flexner, S. D.; Palmstrøm, C. J.; Crowell, P. A. (2007). "Electrical detection of spin transport in lateral ferromagnet–semiconductor devices". Nature Physics. 3 (3): 197. arXiv: cond-mat/0701021 . Bibcode:2007NatPh...3..197L. doi:10.1038/nphys543. S2CID   51390849.
  32. Appelbaum, I.; Huang, B.; Monsma, D. J. (2007). "Electronic measurement and control of spin transport in silicon". Nature. 447 (7142): 295–298. arXiv: cond-mat/0703025 . Bibcode:2007Natur.447..295A. doi:10.1038/nature05803. PMID   17507978. S2CID   4340632.
  33. Žutić, I.; Fabian, J. (2007). "Spintronics: Silicon twists". Nature. 447 (7142): 268–269. Bibcode:2007Natur.447..268Z. doi: 10.1038/447269a . PMID   17507969. S2CID   32830840.
  34. Holub, M.; Shin, J.; Saha, D.; Bhattacharya, P. (2007). "Electrical Spin Injection and Threshold Reduction in a Semiconductor Laser". Physical Review Letters. 98 (14): 146603. Bibcode:2007PhRvL..98n6603H. doi:10.1103/PhysRevLett.98.146603. PMID   17501298.
  35. Van Dijken, S.; Jiang, X.; Parkin, S. S. P. (2002). "Room temperature operation of a high output current magnetic tunnel transistor". Applied Physics Letters. 80 (18): 3364. Bibcode:2002ApPhL..80.3364V. doi:10.1063/1.1474610.
  36. Jungwirth, T. (28 April 2014). "Relativistic Approaches to Spintronics with Antiferromagnets" (PDF) (announcement of a physics colloquium at a Bavarian university). Archived from the original (PDF) on 29 April 2014. Retrieved 29 April 2014.
  37. This corresponds mathematically to the transition from the rotation group SO(3) to its relativistic covering, the "double group" SU(2)
  38. 1 2 Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J. (2016). "Antiferromagnetic spintronics". Nature Nanotechnology. 11 (3). Springer Nature: 231–241. arXiv: 1509.05296 . Bibcode:2016NatNa..11..231J. doi:10.1038/nnano.2016.18. ISSN   1748-3387. PMID   26936817. S2CID   5058124.
  39. 1 2 Gomonay, O.; Jungwirth, T.; Sinova, J. (21 February 2017). "Concepts of antiferromagnetic spintronics". Physica Status Solidi RRL. 11 (4). Wiley: 1700022. arXiv: 1701.06556 . Bibcode:2017PSSRR..1100022G. doi:10.1002/pssr.201700022. ISSN   1862-6254. S2CID   73575617.
  40. Chappert, Claude; Fert, Albert; van Dau, Frédéric Nguyen (2007). "The emergence of spin electronics in data storage". Nature Materials. 6 (11). Springer Science and Business Media LLC: 813–823. Bibcode:2007NatMa...6..813C. doi:10.1038/nmat2024. ISSN   1476-1122. PMID   17972936. S2CID   21075877.

Further reading