Vapor barrier

Last updated
6-mil (0.15 mm) polyethylene plastic sheet as vapour barrier between insulation and gypsum board Vapour barrier.JPG
6-mil (0.15 mm) polyethylene plastic sheet as vapour barrier between insulation and gypsum board
Glass wool pipe insulation covering a steel pipe as it penetrates a mock-up concrete slab whose opening will be firestopped. In this manner, the vapor barrier (in this case made of foil/scrim/kraft paper, called ASJ, all-service jacket, aluminium on the inside, white paper on the outside) can remain intact as it penetrates the fire barrier. Fs195 cp25 fibreglass pc.jpg
Glass wool pipe insulation covering a steel pipe as it penetrates a mock-up concrete slab whose opening will be firestopped. In this manner, the vapor barrier (in this case made of foil/scrim/kraft paper, called ASJ, all-service jacket, aluminium on the inside, white paper on the outside) can remain intact as it penetrates the fire barrier.

A vapor barrier (or vapour barrier) is any material used for damp proofing, typically a plastic or foil sheet, that resists diffusion of moisture through the wall, floor, ceiling, or roof assemblies of buildings and of packaging to prevent interstitial condensation. Technically, many of these materials are only vapor retarders as they have varying degrees of permeability.

Contents

Materials have a moisture vapor transmission rate (MVTR) that is established by standard test methods. One common set of units is g/m2·day or g/100in2·day. Permeability can be reported in perms, a measure of the rate of transfer of water vapor through a material (1.0 US perm = 1.0 grain/square-foot·hour·inch of mercury ≈ 57 SI perm = 57 ng/s·m2·Pa). American building codes have classified vapor retarders as having a water vapor permeance of 1 perm or less when tested in accordance with the ASTM E96 desiccant, or dry cup method. [1] Vapor-retarding materials are generally categorized as:

Materials

Vapor diffusion retarders are normally available as coatings or membranes. The membranes are technically flexible and thin materials, but sometime includes thicker sheet materials named as "structural" vapor diffusion retarders. The vapor diffusion retarders varies from all kinds of materials and keep updating every day, some of them nowadays even combined the functions of other building materials.

Materials used as vapor retarders:

Building construction

Vapor barrier location by geographical location Vapor barrier replace.jpg
Vapor barrier location by geographical location

Moisture or water vapor moves into building cavities in three ways: 1) With air currents, 2) By diffusion through materials, 3) By heat transfer. Of these three, air movement accounts for more than 98% of all water vapor movement in building cavities. [2] A vapor retarder and an air barrier serve to reduce this problem, but are not necessarily interchangeable.

Vapor retarders slow the rate of vapor diffusion into the thermal envelope of a structure. Other wetting mechanisms, such as wind-borne rain, capillary wicking of ground moisture, air transport (infiltration), are equally important.

Usage

The industry has recognized that in many circumstances it may be impractical to design and build building assemblies which never get wet. Good design and practice involve controlling the wetting of building assemblies from both the exterior and interior. [3] So, the use of vapor barrier should be taken into consideration. Their use has already been legislated within the building code of some countries (such as the U.S., Canada, Ireland, England, Scotland & Wales). How, where, and whether a vapor barrier (vapor diffusion retarder) should be used depends on the climate. Typically, the number of heating degree days (HDD) in an area is used to help make these determinations. A heating degree day is a unit that measures how often outdoor daily dry-bulb temperatures fall below an assumed base, normally 18 °C (65 °F). [4] For building in most parts of North America, where winter heating conditions predominate, vapor barrier are placed toward the interior, heated side of insulation in the assembly. In humid regions where warm-weather cooling predominates within buildings, the vapor barrier should be located toward the exterior side of insulation. In relatively mild or balanced climates, or where assemblies are designed to minimize condensation conditions, a vapor barrier may not be necessary at all. [5]

An interior vapor retarder is useful in heating-dominated climates while an exterior vapor retarder is useful in cooling-dominated climates. In most climates it is often better to have a vapor-open building assembly, meaning that walls and roofs should be designed to dry: [6] either to the inside, the outside, or both, so the ventilation of water vapor should be taken into consideration. A vapor barrier on the warm side of the envelope must be combined with a venting path on the cold side of the insulation. This is because no vapor barrier is perfect, and because water may get into the structure, typically from rain. In general, the better the vapor barrier and the drier the conditions, the less venting is required. [7]

In areas below foundation level (subgrade areas), particularly those formed in concrete, vapor retarder placement can be problematic, as moisture infiltration from capillary action can exceed water vapor movement outward through framed and insulated walls.

A slab-on-grade or basement floor should be poured over a cross-laminated polyethylene vapor barrier over 4 inches (10 cm) of granular fill to prevent wicking of moisture from the ground and radon gas incursion.

Inside a steel building, water vapor will condense whenever it comes into contact with a surface that is below the dew point temperature. Visible condensation on windowpanes and purlins that results in dripping can be somewhat mitigated with ventilation; however insulation is the preferred method of condensation prevention.

Confusion with air barrier

The function of a vapor barrier is to retard the migration of water vapor. A vapor barrier is not typically intended to retard the migration of air. This is the function of air barriers. [8] Air is mixed with water vapor. When air moves from location to location due to an air pressure difference, the vapor moves with it. This is a type of migration of water vapor. In the strictest sense air barriers are also vapor barriers when they control the transport of moisture-laden air. [9] It must be mentioned that the designated perm ratings do not reflect the diminished permeability of a given vapor retarder medium when affected by temperature differences on opposing sides of the medium. [10] A discussion about the differences between vapor barriers and air barriers can be found in Quirouette. [11]

Packaging

The ability of a package to control the permeation and penetration of gasses is vital for many types of products. Tests are often conducted on the packaging materials but also on the completed packages, sometimes after being subjected to flexing, handling, vibration, or temperature.

See also

Related Research Articles

<span class="mw-page-title-main">Thermal insulation</span> Minimization of heat transfer

Thermal insulation is the reduction of heat transfer between objects in thermal contact or in range of radiative influence. Thermal insulation can be achieved with specially engineered methods or processes, as well as with suitable object shapes and materials.

<span class="mw-page-title-main">R-value (insulation)</span> Measure of how well an object, per unit of area, resists conductive flow of heat

In the context of construction, the R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive flow of heat. R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the warmer surface and colder surface of a barrier under steady-state conditions. The measure is therefore equally relevant for lowering energy bills for heating in the winter, for cooling in the summer, and for general comfort.

<span class="mw-page-title-main">Radiant barrier</span>

A radiant barrier is a type of building material that reflects thermal radiation and reduces heat transfer. Because thermal energy is also transferred by conduction and convection, in addition to radiation, radiant barriers are often supplemented with thermal insulation that slows down heat transfer by conduction or convection.

<span class="mw-page-title-main">Waterproofing</span> Process of making an object or structure waterproof or water-resistant

Waterproofing is the process of making an object or structure waterproof or water-resistant so that it remains relatively unaffected by water or resisting the ingress of water under specified conditions. Such items may be used in wet environments or underwater to specified depths.

Low emissivity refers to a surface condition that emits low levels of radiant thermal (heat) energy. All materials absorb, reflect, and emit radiant energy according to Planck's law but here, the primary concern is a special wavelength interval of radiant energy, namely thermal radiation of materials. In common use, especially building applications, the temperature range of approximately -40 to +80 degrees Celsius is the focus, but in aerospace and industrial process engineering, much broader ranges are of practical concern.

<span class="mw-page-title-main">Exterior insulation finishing system</span> Non-load bearing building cladding

Exterior insulation and finish system (EIFS) is a general class of non-load bearing building cladding systems that provides exterior walls with an insulated, water-resistant, finished surface in an integrated composite material system.

<span class="mw-page-title-main">Superinsulation</span> Method of insulating a building

Superinsulation is an approach to building design, construction, and retrofitting that dramatically reduces heat loss by using much higher levels of insulation and airtightness than normal. Superinsulation is one of the ancestors of the passive house approach.

A building envelope is the physical separator between the conditioned and unconditioned environment of a building including the resistance to air, water, heat, light, and noise transfer.

<span class="mw-page-title-main">Housewrap</span> Material used to protect buildings

Housewrap, also known by the genericized trademark homewrap, generally denotes a modern synthetic material used to protect buildings. Housewrap functions as a weather-resistant barrier, preventing rain or other forms of moisture from getting into the wall assembly while allowing water vapor to pass to the exterior. If moisture from either direction is allowed to build up within stud or cavity walls, mold and rot can set in and fiberglass or cellulose insulation will lose its R-value due to heat-conducting moisture. House wrap may also serve as an air barrier if it is sealed carefully at seams.

<span class="mw-page-title-main">Building insulation</span> Material to reduce heat transfer in structures

Building insulation is material used in a building to reduce the flow of thermal energy. While the majority of insulation in buildings is for thermal purposes, the term also applies to acoustic insulation, fire insulation, and impact insulation. Often an insulation material will be chosen for its ability to perform several of these functions at once.

<span class="mw-page-title-main">Damp proofing</span> Type of moisture control in building construction

Damp proofing in construction is a type of moisture control applied to building walls and floors to prevent moisture from passing into the interior spaces. Dampness problems are among the most frequent problems encountered in residences.

<span class="mw-page-title-main">Building insulation material</span>

Building insulation materials are the building materials which form the thermal envelope of a building or otherwise reduce heat transfer.

<span class="mw-page-title-main">Crawl space</span> Enclosed space below a structure that is too short to stand erect in

A crawl space is an unoccupied, unfinished, narrow space within a building, between the ground and the first floor. The crawl space is so named because there is typically only enough room to crawl rather than stand; anything larger than about 1 to 1.5 metres and beneath the ground floor would tend to be considered a basement.

<span class="mw-page-title-main">Cellulose insulation</span>

Cellulose insulation is plant fiber used in wall and roof cavities to insulate, draught proof and reduce noise. Building insulation in general is low-thermal-conductivity material used to reduce building heat loss and gain and reduce noise transmission.

Air barriers control air leakage into and out of the building envelope. Air barrier products may take several forms:

<span class="mw-page-title-main">Pipe insulation</span>

Pipe Insulation is thermal or acoustic insulation used on pipework.

<span class="mw-page-title-main">Rigid panel</span>

Rigid panel insulation, also referred to as continuous insulation, can be made from foam plastics such as polyurethane (PUR), polyisocyanurate (PIR), and polystyrene, or from fibrous materials such as fiberglass, rock and slag wool. Rigid panel continuous insulation is often used to provide a thermal break in the building envelope, thus reducing thermal bridging.

<span class="mw-page-title-main">Rainscreen</span>

A rainscreen is an exterior wall detail where the siding stands off from the moisture-resistant surface of an air/water barrier applied to the sheathing to create a capillary break and to allow drainage and evaporation. The rainscreen is the cladding or siding itself but the term rainscreen implies a system of building. Ideally the rainscreen prevents the wall air/water barrier from getting wet but because of cladding attachments and penetrations water is likely to reach this point, and hence materials are selected to be moisture tolerant and integrated with flashing. In some cases a rainscreen wall is called a pressure-equalized rainscreen wall where the ventilation openings are large enough for the air pressure to nearly equalize on both sides of the rain screen, but this name has been criticized as being redundant and is only useful to scientists and engineers.

<span class="mw-page-title-main">Joseph Lstiburek</span>

Joseph Lstiburek is a forensic engineer, building investigator, building science consultant, author, speaker and widely known expert on building moisture control, indoor air quality, and retro-fit of existing and historic buildings.

Interstitial condensation is a type of condensation that may occur within an enclosed wall, roof or floor cavity structure, which can create dampening.

References

  1. Smart Vapor Retarders. Certain Teed Corporation. 2006. p. 2.
  2. US Department of Energy. "How Moisture Moves through a Home" . Retrieved January 1, 2011.
  3. Lstiburek, Joseph (2004). Vapor Barriers and Wall Design. Building Science Press.
  4. U.S. Department of Energy. "Vapor Barriers or Vapor Diffusion Retarders". U.S. Department of Energy. Retrieved 2011-11-24.
  5. Allen, Edward; Iano, Joseph (2013). Fundamentals of Building Construction: Materials and Methods (6th ed.). Wiley. ISBN   978-1-118-42086-7.
  6. The Perfect Wall, Roof, and Slab - Building Science Podcast
  7. Donald, Wulfinghoff (1999). Energy Efficiency Manual: for everyone who uses energy, pays for utilities, designs and builds, is interested in energy conservation and the environment. Energy InstPr ( March 2000). p. 1393. ISBN   0-9657926-7-6.
  8. Lstiburek, Joseph (October 24, 2006). Building Science Digest 106: Understanding Vapor Barriers (PDF). 2006 Building Science Press.
  9. MIDWEST RESEARCH INSTITUTE, ed. (6 April 2004). "5.C.2.1 Vapor Barrier Journal Paper" (PDF): 3. KAAX-3-32443-00. Retrieved 2011-11-29.{{cite journal}}: Cite journal requires |journal= (help)
  10. "Vapor Retarders and Barriers". by, Robert Wewer. FSI Restorations. Retrieved 1 January 2014.
  11. R.L., Quirouette (July 1985). "The Difference Between a Vapor Barrier and an Air Barrier: Building Practice Note 54". Building Practice Note. Ottawa, Ontario, Canada: National Research Council of Canada. ISSN   0701-5216.