High efficiency glandless circulating pump

Last updated

Three different high efficiency glandless circulating pumps designed and developed by the company Wilo. Wilo obiegowe he.jpg
Three different high efficiency glandless circulating pumps designed and developed by the company Wilo.

A high efficiency glandless circulating pump is a component of a heating and air conditioning system that allows the system to perform with increased efficiency while significantly reducing the system's electrical usage.

Contents

Description

It is primarily composed of an electronically commutated synchronous motor (ECM) with a permanent magnet rotor. [1] The ECM is a motor that converts a direct current (DC) from an electrical source into an alternating current (AC) which is sent to the motor itself, allowing for increased efficiency over standard AC motors. The permanent magnet rotor consists of an iron core, surrounded by multiple magnetic rare earth metals, and finally a metal sleeve that evenly spaces the magnets around the core, which helps to drive the motor. [2] By utilizing multiple small improvements in pump-design technology such as a double pump in parallel system and variable controls, these pumps are able to run at about a 50% to 70% increased efficiency with up to an 80% decrease in electricity consumption over the previous standard design. [3] This pump has recently become the new standard in both commercial and residential buildings across the European Union due to a recent ordinance by the European ErP (Eco-Design) Directive. The ErP directive began enforcing this new standard of regulation of these pumps 1 January 2013 and will become even stricter on efficiency standards on 1 August 2015 in order to meet the EU's goal of a 50% total reduction in the pump's energy usage by 2020. [4]

Pump design

Primary factors

Diagram of the different components that make up a standard high efficiency glandless circulating pump. Pump diagram.PNG
Diagram of the different components that make up a standard high efficiency glandless circulating pump.

The primary design factors of a high efficiency glandless circulating pump include an electronically commutated synchronous motor, a permanent magnet rotor, and canned rotor technology. An electronically commutated synchronous motor is used to convert the energy current from a DC energy source into an AC current which is supplied to the drive motor. It utilizes the magnetomotive force which is generated by surface currents placed on the surfaces of the stator and rotor and the permanent magnets to generate the electric current which is in output to the drive motor. [5] The canned rotor technology eliminates the need for a shaft seal that many conventional pumps must use through its unique design. Whereas standard pumps with shaft seals have multiple chambers with different rotating parts in each, canned rotor technology allows all of the rotating parts within the pump to exist in a single chamber. This increases the overall efficiency since the liquid used to lubricate the shaft bearings is also used to cool the motor. [3] The electronic components of the motor are attached outside this system by means of an encapsulated motor cartridge, which is an independent metal compartment used solely for housing the electronic components. [6]

Secondary factors

Many minor factors of the pump's design including its double pump system and control options give it additional efficiency without sacrificing any of its performance. By using a double pump system together with variable and automatic control, the pump is able to decrease its energy consumption while increasing efficiency and reliability. [7] Using the pump's variable controls allows the pump to base its amount of energy consumption on how much it is actually performing, cutting down on usage during non-peak hours and extending the pump's life span. [6] The automatic controls allow the pump to follow a set schedule of how much energy to consume during specific hours, which allows building owners to cut down even further on electricity costs. By dividing the output into a double pump in parallel design, the system is able to greatly adapt to partial load conditions. This accounts for a significant increase in reliability and the 50% to 70% efficiency increase that these high efficiency pumps achieve. [3]

Implementation

These types of pumps are used primarily in heating and air conditioning systems within both residential and commercial buildings such as offices and apartment complexes. The pump is the central component of these systems and accounts for most of the electricity usage within the system, making its design key to an increase in efficiency and decrease in energy consumption. Although the pump can be installed both inside and outside of buildings, many precautions must be taken in order to protect the pump from unfavorable weather conditions. [3] These pumps are fairly simple to integrate into systems that follow the old standard since each pump is able to increase its efficiency by changing its design internally, meaning it will still fit into older systems without any problems requiring special adapters.

Necessity

High efficiency glandless circulating pumps have become the industry standard when developing and maintaining buildings within the European Union due to recent changes to the carbon emissions goals. Commercial and residential buildings now have to be outfitted with these pumps in order to decrease electricity usage and, in the long run, decrease the amount of pollutants produced. [6] This new standard, referred to as the energy efficiency index (EEI), will set the bare minimum efficiency level at 0.27, and set the efficiency grading scale from this base value. [7] The EU has also scheduled the efficiency scale to be revised again by 1 August 2015 to set the minimum efficiency to 0.23. Various companies such as Wilo have successfully developed pumps that have been projected to save up to 80% in electricity usage, meeting both of the new grading scale minimums set this year and in 2015. [7] Pump designs are still being revised to continually try to achieve higher efficiency standards and lower the impact on the environment in order to meet the goal of up to a 50% reduction in both CO2 emissions and electricity usage across the EU by 2020.

Related Research Articles

Electric motor Machine that converts electrical energy into mechanical energy

An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates with a reversed flow of power, converting mechanical energy into electrical energy.

Electric generator Device that converts other energy to electrical energy

In electricity generation, a generator is a device that converts motive power into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all of the power for electric power grids.

Induction motor Type of AC electric motor

An induction motor or asynchronous motor is an AC electric motor in which the electric current in the rotor needed to produce torque is obtained by electromagnetic induction from the magnetic field of the stator winding. An induction motor can therefore be made without electrical connections to the rotor. An induction motor's rotor can be either wound type or squirrel-cage type.

Senkron motor Type of AC motor

A synchronous electric motor is an AC electric motor in which, at steady state, the rotation of the shaft is synchronized with the frequency of the supply current; the rotation period is exactly equal to an integral number of AC cycles. Synchronous motors contain multiphase AC electromagnets on the stator of the motor that create a magnetic field which rotates in time with the oscillations of the line current. The rotor with permanent magnets or electromagnets turns in step with the stator field at the same rate and as a result, provides the second synchronized rotating magnet field of any AC motor. A synchronous motor is termed doubly fed if it is supplied with independently excited multiphase AC electromagnets on both the rotor and stator.

A DC-to-DC converter is an electronic circuit or electromechanical device that converts a source of direct current (DC) from one voltage level to another. It is a type of electric power converter. Power levels range from very low to very high.

Brushless DC electric motor Synchronous electric motor powered by an inverter

A brushless DC electric motor, also known as an electronically commutated motor or synchronous DC motor, is a synchronous motor using a direct current (DC) electric power supply. It uses an electronic controller to switch DC currents to the motor windings producing magnetic fields which effectively rotate in space and which the permanent magnet rotor follows. The controller adjusts the phase and amplitude of the DC current pulses to control the speed and torque of the motor. This control system is an alternative to the mechanical commutator (brushes) used in many conventional electric motors.

DC motor Motor which works on direct current

A DC motor is any of a class of rotary electrical motors that converts direct current (DC) electrical energy into mechanical energy. The most common types rely on the forces produced by magnetic fields. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current in part of the motor.

Squirrel-cage rotor Rotating part of the common squirrel-cage induction motor

A squirrel-cage rotor is the rotating part of the common squirrel-cage induction motor. It consists of a cylinder of steel laminations, with aluminum or copper conductors embedded in its surface. In operation, the non-rotating stator winding is connected to an alternating current power source; the alternating current in the stator produces a rotating magnetic field. The rotor winding has current induced in it by the stator field, like a transformer except that the current in the rotor is varying at the stator field rotation rate minus the physical rotation rate. The interaction of the magnetic fields of currents in the stator and rotor produce a torque on the rotor.

Variable-frequency drive Type of adjustable-speed drive

A variable-frequency drive (VFD) is a type of motor drive used in electro-mechanical drive systems to control AC motor speed and torque by varying motor input frequency and, depending on topology, to control associated voltage or current variation. VFDs may also be known as 'AFDs', 'ASDs', 'VSDs', 'AC drives', 'micro drives', 'inverter drives' or, simply, 'drives'.

Turbomachinery

Turbomachinery, in mechanical engineering, describes machines that transfer energy between a rotor and a fluid, including both turbines and compressors. While a turbine transfers energy from a fluid to a rotor, a compressor transfers energy from a rotor to a fluid.

Universal motor

The universal motor is a type of electric motor that can operate on either AC or DC power and uses an electromagnet as its stator to create its magnetic field. It is a commutated series-wound motor where the stator's field coils are connected in series with the rotor windings through a commutator. It is often referred to as an AC series motor. The universal motor is very similar to a DC series motor in construction, but is modified slightly to allow the motor to operate properly on AC power. This type of electric motor can operate well on AC because the current in both the field coils and the armature will alternate synchronously with the supply. Hence the resulting mechanical force will occur in a consistent direction of rotation, independent of the direction of applied voltage, but determined by the commutator and polarity of the field coils.

The Mendocino motor is a solar-powered magnetically levitated electric motor. With a very low power output, they are generally used as technical demonstrations only, but are a popular construction project with electronic enthusiasts.

AC motor Electric motor driven by an AC electrical input

An AC motor is an electric motor driven by an alternating current (AC). The AC motor commonly consists of two basic parts, an outside stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft producing a second rotating magnetic field. The rotor magnetic field may be produced by permanent magnets, reluctance saliency, or DC or AC electrical windings.

Doubly-fed electric machines also slip-ring generators are electric motors or electric generators, where both the field magnet windings and armature windings are separately connected to equipment outside the machine.

Dynamo Electrical generator that produces direct current with the use of a commutator

A dynamo is an electrical generator that creates direct current using a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter.

Efficient energy use Energy efficiency

Efficient energy use, sometimes simply called energy efficiency, is the goal to reduce the amount of energy required to provide products and services and can also reduce effects of air pollution. For example, insulating a building allows it to use less heating and cooling energy to achieve and maintain a thermal comfort. Installing light-emitting diode bulbs, fluorescent lighting, or natural skylight windows reduces the amount of energy required to attain the same level of illumination compared to using traditional incandescent light bulbs. Improvements in energy efficiency are generally achieved by adopting a more efficient technology or production process or by application of commonly accepted methods to reduce energy losses.

In electrical engineering, electric machine is a general term for machines using electromagnetic forces, such as electric motors, electric generators, and others. They are electromechanical energy converters: an electric motor converts electricity to mechanical power while an electric generator converts mechanical power to electricity. The moving parts in a machine can be rotating or linear. Besides motors and generators, a third category often included is transformers, which although they do not have any moving parts are also energy converters, changing the voltage level of an alternating current.

Voltage optimisation is a term given to the systematic controlled reduction in the voltages received by an energy consumer to reduce energy use, power demand and reactive power demand. While some voltage 'optimisation' devices have a fixed voltage adjustment, others electronically regulate the voltage automatically.

Run-around coil

A run-around coil is a type of energy recovery heat exchanger most often positioned within the supply and exhaust air streams of an air handling system, or in the exhaust gases of an industrial process, to recover the heat energy. Generally, it refers to any intermediate stream used to transfer heat between two streams that are not directly connected for reasons of safety or practicality. It may also be referred to as a run-around loop, a pump-around coil or a liquid coupled heat exchanger.

Renewable energy sources such as solar, wind, tidal, hydro, biomass, and geothermal have become significant sectors of the energy market. The rapid growth of these sources in the 21st century has been prompted by increasing costs of fossil fuels as well as their environmental impact issues that significantly lowered their use.

References

  1. (Rubik M., et al.(2005). Instalacje, gazowe, ogrzewcze, wentylacyjne i wodno-kanalizacyjne w budownictwie. Wydawnictwo Forum Sp. z o.o., Poznań; Chapter 5.14 Rubik M.: Pompy obiegowe w instalacjach c.o. i c.w.u.)(Polish language).
  2. Stark, William. "Permanent Magnet Rotor". United States Patent.
  3. 1 2 3 4 Circulating Pumps (PDF). Wilo. 2013. pp. 10–14.
  4. "HIGH EFFICIENCY PUMPS A MUST FROM JANUARY 2013". Builders Merchants Journal. January 2013. Archived from the original on 13 November 2013. Retrieved 13 November 2013.
  5. Gottkehaskamp, Hartmann, Raimund, Alexander (September 2013). Analytical Calculation Model of an Electronically Commutated Synchronous Motor Including Parasitic Effects. IEEE. pp. 1–6. ISBN   978-3-8007-3537-2.
  6. 1 2 3 OEM High Efficiency Circulation Pumps (PDF). Wilo. 2013. pp. 8–10. Archived from the original (PDF) on 13 November 2013. Retrieved 13 November 2013.
  7. 1 2 3 "Wilo high-efficiency glandless circulating pumps". Building Talk. Archived from the original on 13 November 2013.