Basophil

Last updated
Basophil
Blausen 0077 Basophil (crop).png
3D rendering of a basophil
Basophile-9.JPG
Dyed basophil among red blood cells
Details
System Immune system
Identifiers
MeSH D001491
TH H2.00.04.1.02022
FMA 62862
Anatomical terms of microanatomy

Basophils are a type of white blood cell. Basophils are the least common type of granulocyte, representing about 0.5% to 1% of circulating white blood cells. [1] However, they are the largest type of granulocyte and how they work is not fully understood.[ citation needed ] They are responsible for inflammatory reactions during immune response, as well as in the formation of acute and chronic allergic diseases, including anaphylaxis, asthma, atopic dermatitis and hay fever. [2] They also produce compounds that coordinate immune responses, including histamine and serotonin that induce inflammation, and heparin that prevents blood clotting, [3] although there are less than that found in mast cell granules. [4] Mast cells were once thought to be basophils that migrated from the blood into their resident tissues (connective tissue), but they are now known to be different types of cells. [5]

Contents

Basophils were discovered in 1879 by German physician Paul Ehrlich, who one year earlier had found a cell type present in tissues that he termed mastzellen (now mast cells). [6] Ehrlich received the 1908 Nobel Prize in Physiology or Medicine for his discoveries.

The name comes from the fact that these leukocytes are basophilic, i.e., they are susceptible to staining by basic dyes, as shown in the picture.

Structure

Basophils contain large cytoplasmic granules which obscure the cell nucleus under the microscope when stained. However, when unstained, the nucleus is visible and it usually has two lobes. [7] The mast cell, another granulocyte, is similar in appearance and function. Both cell types store histamine, a chemical that is secreted by the cells when stimulated. However, they arise from different branches of hematopoiesis, and mast cells usually do not circulate in the blood stream, but instead are located in connective tissue. Like all circulating granulocytes, basophils can be recruited out of the blood into a tissue when needed.

Function

Reference ranges for blood tests of white blood cells, comparing basophil amount (shown in violet) with other cells. Reference ranges for blood tests - white blood cells.png
Reference ranges for blood tests of white blood cells, comparing basophil amount (shown in violet) with other cells.

Basophils appear in many specific kinds of inflammatory reactions, particularly those that cause allergic symptoms. Basophils contain anticoagulant heparin, [8] which prevents blood from clotting too quickly. They also contain the vasodilator histamine, which promotes blood flow to tissues. They can be found in unusually high numbers at sites of ectoparasite infection (e.g., ticks).

Like eosinophils, basophils play a role in both parasitic infections and allergies. [9] They are found in tissues where allergic reactions are occurring and probably contribute to the severity of these reactions. Basophils have protein receptors on their cell surface that bind IgE, an immunoglobulin involved in macroparasite defense and allergy. It is the bound IgE antibody that confers a selective response of these cells to environmental substances (e.g., pollen proteins or helminth antigens).

Recent studies in mice suggest that basophils may also regulate the behavior of T cells and mediate the magnitude of the secondary immune response. [10]

CD200

Basophil function is inhibited by CD200. Herpesvirus-6, herpesvirus-7, and herpesvirus-8 produce a CD200 homolog which also inhibits basophil function. This suggests that basophils may play a role in the immune response to these viruses. [11] The role of basophils in the immune response to these viruses is further supported by findings that the CD200 receptor is expressed more frequently in basophils than in other circulating leukocytes. [12]

Secretions

Basophils arise and mature in bone marrow. When activated, basophils degranulate to release histamine, proteoglycans (e.g. heparin and chondroitin), and proteolytic enzymes (e.g. elastase and lysophospholipase). They also secrete lipid mediators like leukotrienes (LTD-4), and several cytokines. Histamine and proteoglycans are pre-stored in the cell's granules while the other secreted substances are newly generated. Each of these substances contributes to inflammation. Recent evidence suggests that basophils are an important source of the cytokine, interleukin-4, perhaps more important than T cells. Interleukin-4 is considered one of the critical cytokines in the development of allergies and the production of IgE antibody by the immune system. There are other substances that can activate basophils to secrete which suggests that these cells have other roles in inflammation. [13]

The degranulation of basophils can be investigated in vitro by using flow cytometry and the so-called basophil-activation-test (BAT). Especially, in the diagnosis of allergies including of drug reactions (e.g. induced by contrast medium), the BAT is of great impact. [14]

Basopenia (a low basophil count) is difficult to demonstrate as the normal basophil count is so low; it has been reported in association with autoimmune urticaria [15] (a chronic itching condition). Basophilia is also uncommon but may be seen in some forms of leukemia or lymphoma.

Clinical significance

Immunophenotyping

Basophils of mice and humans have consistent immunophenotypes, including FcεRI +, CD123, CD49b(DX-5)+, CD69 +, Thy-1.2+, 2B4 +, CD11b dull, CD117(c-kit), CD24 , CD19 , CD80 , CD14 , CD23 , Ly49c , CD122 , CD11c , Gr-1, NK1.1, B220 , CD3 , γδTCR , αβTCR , α4 and β4-integrin negative. [16]

Recently, Heneberg [17] proposed that basophils may be defined as the cellular population positive for CD13, CD44, CD54, CD63, CD69, CD107a, CD123, CD164, CD193/ CCR3, CD203c, TLR-4, and FcεRI. When activated, some additional surface markers are known to be upregulated (CD13, CD107a, CD164), or surface-exposed (CD63, and the ectoenzyme CD203c). [17]

Allergy diagnosis

Basophils are easily isolated from venous blood and present good "indicator cells" of an IgE-mediated allergic response based on the upregulation of activation markers such as CD63 and/or CD203c upon suspect allergen stimulation. [18] Therefore, the BAT serves to confirm IgE-mediated allergy following uncertain results from classical testing based on anamnesis, skin testing or specific IgE results. More recently, BAT has also been used for the monitoring of successful allergen immunotherapy (desensitization) to differentiate short-term desensitization versus sustained unresponsiveness to the allergen. [19]

Etymology and pronunciation

The word basophil uses combining forms of baso- + -phil , yielding "base-loving".

Additional images

See also

Related Research Articles

An immune response is a physiological reaction which occurs within an organism in the context of inflammation for the purpose of defending against exogenous factors. These include a wide variety of different toxins, viruses, intra- and extracellular bacteria, protozoa, helminths, and fungi which could cause serious problems to the health of the host organism if not cleared from the body.

<span class="mw-page-title-main">Eosinophil</span> Variety of white blood cells

Eosinophils, sometimes called eosinophiles or, less commonly, acidophils, are a variety of white blood cells and one of the immune system components responsible for combating multicellular parasites and certain infections in vertebrates. Along with mast cells and basophils, they also control mechanisms associated with allergy and asthma. They are granulocytes that develop during hematopoiesis in the bone marrow before migrating into blood, after which they are terminally differentiated and do not multiply. They form about 2 to 3% of white blood cells in the body.

<span class="mw-page-title-main">Mast cell</span> Cell found in connective tissue

A mast cell is a resident cell of connective tissue that contains many granules rich in histamine and heparin. Specifically, it is a type of granulocyte derived from the myeloid stem cell that is a part of the immune and neuroimmune systems. Mast cells were discovered by Paul Ehrlich in 1877. Although best known for their role in allergy and anaphylaxis, mast cells play an important protective role as well, being intimately involved in wound healing, angiogenesis, immune tolerance, defense against pathogens, and vascular permeability in brain tumors.

<span class="mw-page-title-main">Histamine</span> Organic compound involved in immune responses

Histamine is an organic nitrogenous compound involved in local immune responses communication, as well as regulating physiological functions in the gut and acting as a neurotransmitter for the brain, spinal cord, and uterus. Since histamine was discovered in 1910, it has been considered a local hormone (autocoid) because it lacks the classic endocrine glands to secrete it; however, in recent years, histamine has been recognized as a central neurotransmitter. Histamine is involved in the inflammatory response and has a central role as a mediator of itching. As part of an immune response to foreign pathogens, histamine is produced by basophils and by mast cells found in nearby connective tissues. Histamine increases the permeability of the capillaries to white blood cells and some proteins, to allow them to engage pathogens in the infected tissues. It consists of an imidazole ring attached to an ethylamine chain; under physiological conditions, the amino group of the side-chain is protonated.

<span class="mw-page-title-main">Immunoglobulin D</span> Antibody isotype

Immunoglobulin D (IgD) is an antibody isotype that makes up about 1% of proteins in the plasma membranes of immature B-lymphocytes where it is usually co-expressed with another cell surface antibody called IgM. IgD is also produced in a secreted form that is found in very small amounts in blood serum, representing 0.25% of immunoglobulins in serum. The relative molecular mass and half-life of secreted IgD is 185 kDa and 2.8 days, respectively. Secreted IgD is produced as a monomeric antibody with two heavy chains of the delta (δ) class, and two Ig light chains.

<span class="mw-page-title-main">Immunoglobulin E</span> Immunoglobulin E (IgE) Antibody

Immunoglobulin E (IgE) is a type of antibody that has been found only in mammals. IgE is synthesised by plasma cells. Monomers of IgE consist of two heavy chains and two light chains, with the ε chain containing four Ig-like constant domains (Cε1–Cε4). IgE is thought to be an important part of the immune response against infection by certain parasitic worms, including Schistosoma mansoni, Trichinella spiralis, and Fasciola hepatica. IgE is also utilized during immune defense against certain protozoan parasites such as Plasmodium falciparum. IgE may have evolved as a defense to protect against venoms.

<span class="mw-page-title-main">Granulocyte</span> Category of white blood cells

Granulocytes are cells in the innate immune system characterized by the presence of specific granules in their cytoplasm. Such granules distinguish them from the various agranulocytes. All myeloblastic granulocytes are polymorphonuclear, that is, they have varying shapes (morphology) of the nucleus ; and are referred to as polymorphonuclear leukocytes. In common terms, polymorphonuclear granulocyte refers specifically to "neutrophil granulocytes", the most abundant of the granulocytes; the other types have varying morphology. Granulocytes are produced via granulopoiesis in the bone marrow.

<span class="mw-page-title-main">Type I hypersensitivity</span> Type of allergic reaction

Type I hypersensitivity, in the Gell and Coombs classification of allergic reactions, is an allergic reaction provoked by re-exposure to a specific type of antigen referred to as an allergen. Type I is distinct from type II, type III and type IV hypersensitivities. The relevance of the Gell and Coombs classification of allergic reactions has been questioned in the modern-day understanding of allergy, and it has limited utility in clinical practice.

<span class="mw-page-title-main">Allergic conjunctivitis</span> Medical condition

Allergic conjunctivitis (AC) is inflammation of the conjunctiva due to allergy. Although allergens differ among patients, the most common cause is hay fever. Symptoms consist of redness, edema (swelling) of the conjunctiva, itching, and increased lacrimation. If this is combined with rhinitis, the condition is termed allergic rhinoconjunctivitis (ARC).

<span class="mw-page-title-main">Innate immune system</span> One of the two main immunity strategies

The innate, or nonspecific, immune system is one of the two main immunity strategies in vertebrates. The innate immune system is an alternate defense strategy and is the dominant immune system response found in plants, fungi, insects, and primitive multicellular organisms.

<span class="mw-page-title-main">Fc receptor</span> Surface protein important to the immune system

In immunology, an Fc receptor is a protein found on the surface of certain cells – including, among others, B lymphocytes, follicular dendritic cells, natural killer cells, macrophages, neutrophils, eosinophils, basophils, human platelets, and mast cells – that contribute to the protective functions of the immune system. Its name is derived from its binding specificity for a part of an antibody known as the Fc region. Fc receptors bind to antibodies that are attached to infected cells or invading pathogens. Their activity stimulates phagocytic or cytotoxic cells to destroy microbes, or infected cells by antibody-mediated phagocytosis or antibody-dependent cell-mediated cytotoxicity. Some viruses such as flaviviruses use Fc receptors to help them infect cells, by a mechanism known as antibody-dependent enhancement of infection.

<span class="mw-page-title-main">FCER1</span>

The high-affinity IgE receptor, also known as FcεRI, or Fc epsilon RI, is the high-affinity receptor for the Fc region of immunoglobulin E (IgE), an antibody isotype involved in the allergy disorder and parasites immunity. FcεRI is a tetrameric receptor complex that binds Fc portion of the ε heavy chain of IgE. It consists of one alpha, one beta, and two gamma chains connected by two disulfide bridges on mast cells and basophils. It lacks the beta subunit on other cells. It is constitutively expressed on mast cells and basophils and is inducible in eosinophils.

<span class="mw-page-title-main">Allergic inflammation</span>

Allergic inflammation is an important pathophysiological feature of several disabilities or medical conditions including allergic asthma, atopic dermatitis, allergic rhinitis and several ocular allergic diseases. Allergic reactions may generally be divided into two components; the early phase reaction, and the late phase reaction. While the contribution to the development of symptoms from each of the phases varies greatly between diseases, both are usually present and provide us a framework for understanding allergic disease.

Immune dysregulation is any proposed or confirmed breakdown or maladaptive change in molecular control of immune system processes. For example, dysregulation is a component in the pathogenesis of autoimmune diseases and some cancers. Immune system dysfunction, as seen in IPEX syndrome leads to immune dysfunction, polyendocrinopathy, enteropathy, X-linked (IPEX). IPEX typically presents during the first few months of life with diabetes mellitus, intractable diarrhea, failure to thrive, eczema, and hemolytic anemia. unrestrained or unregulated immune response.

<span class="mw-page-title-main">Degranulation</span> Process by which cells lose secretory granules

Degranulation is a cellular process that releases antimicrobial cytotoxic or other molecules from secretory vesicles called granules found inside some cells. It is used by several different cells involved in the immune system, including granulocytes and mast cells. It is also used by certain lymphocytes such as natural killer (NK) cells and cytotoxic T cells, whose main purpose is to destroy invading microorganisms.

<span class="mw-page-title-main">SIGLEC8</span> Protein-coding gene in the species Homo sapiens

Sialic acid-binding Ig-like lectin 8 is a protein that in humans is encoded by the SIGLEC8 gene. This gene is located on chromosome 19q13.4, about 330 kb downstream of the SIGLEC9 gene. Within the siglec family of transmembrane proteins, Siglec-8 belongs to the CD33-related siglec subfamily, a subfamily that has undergone rapid evolution.

<span class="mw-page-title-main">Basophil activation</span>

Allergic symptoms are caused by an initial systemic histamine release by activated basophils and mast cells, that may lead to shock with laryngeal edema, lower-airway obstruction and hypotension. This is why basophils are considered with mast cells to be the key cells in allergic diseases.

<span class="mw-page-title-main">White blood cell</span> Type of cells of the immunological system

White blood cells, also called leukocytes or immune cells also called immunocytes, are cells of the immune system that are involved in protecting the body against both infectious disease and foreign invaders. White blood cells include three main subtypes; granulocytes, lymphocytes and monocytes.

<span class="mw-page-title-main">ILC2</span>

ILC2 cells, or type 2 innate lymphoid cells are a type of innate lymphoid cell. Not to be confused with the ILC. They are derived from common lymphoid progenitor and belong to the lymphoid lineage. These cells lack antigen specific B or T cell receptor because of the lack of recombination activating gene. ILC2s produce type 2 cytokines and are involved in responses to helminths, allergens, some viruses, such as influenza virus and cancer.

<span class="mw-page-title-main">Fish allergy</span> Type of food allergy caused by fish

Fish allergy is an immune hypersensitivity to proteins found in fish. Symptoms can be either rapid or gradual in onset. The latter can take hours to days to appear. The former may include anaphylaxis, a potentially life-threatening condition which requires treatment with epinephrine. Other presentations may include atopic dermatitis or inflammation of the esophagus. Fish is one of the eight common food allergens which are responsible for 90% of allergic reactions to foods: cow's milk, eggs, wheat, shellfish, peanuts, tree nuts, fish, and soy beans.

References

  1. "Blood differential test". Medline Plus. U.S. National Library of Medicine. Archived from the original on 21 April 2016. Retrieved 22 April 2016.
  2. Mukai K, Galli SJ (2013). "Basophils". doi:10.1002/9780470015902.a0001120.pub3. ISBN   978-0470016176. Archived from the original on 2016-05-01.{{cite book}}: |journal= ignored (help); Missing or empty |title= (help)
  3. Khurana (2009). Textbook Of Medical Physiology (2nd ed.). Elsevier. p. 180. ISBN   978-81-8147-850-4. Archived from the original on 2018-05-04.
  4. Stone KD, Prussin C, Metcalfe DD (February 2010). "IgE, mast cells, basophils, and eosinophils". The Journal of Allergy and Clinical Immunology. 125 (2 Suppl 2): S73-80. doi:10.1016/j.jaci.2009.11.017. PMC   2847274 . PMID   20176269.
  5. Franco CB, Chen CC, Drukker M, Weissman IL, Galli SJ (April 2010). "Distinguishing mast cell and granulocyte differentiation at the single-cell level". Cell Stem Cell. 6 (4): 361–8. doi:10.1016/j.stem.2010.02.013. PMC   2852254 . PMID   20362540.
  6. Blank U, Falcone FH, Nilsson G (September 2013). "The history of mast cell and basophil research - some lessons learnt from the last century". Allergy. 68 (9): 1093–101. doi: 10.1111/all.12197 . PMID   23991682. S2CID   31710697.
  7. "Basophil". medcell.med.yale.edu. Archived from the original on 2020-07-03. Retrieved 2019-03-15.
  8. Lim, Gregory (17 December 2017). "Discovery and purification of heparin". Nature Reviews Cardiology.
  9. Voehringer D (December 2009). "The role of basophils in helminth infection". Trends in Parasitology. 25 (12): 551–6. doi:10.1016/j.pt.2009.09.004. PMID   19782643.
  10. Nakanishi K (December 2010). "Basophils as APC in Th2 response in allergic inflammation and parasite infection". Current Opinion in Immunology. 22 (6): 814–20. doi:10.1016/j.coi.2010.10.018. PMID   21095110.
  11. Shiratori I, Yamaguchi M, Suzukawa M, Yamamoto K, Lanier LL, Saito T, Arase H (October 2005). "Down-regulation of basophil function by human CD200 and human herpesvirus-8 CD200". Journal of Immunology. 175 (7): 4441–9. doi: 10.4049/jimmunol.175.7.4441 . PMID   16177086.
  12. Torrero, Marina; Larson, David; Hübner, Marc; Mitre, Edson (March 2009). "CD200R surface expression as a marker of murine basophil activation". Clinical & Experimental Allergy. 39 (3): 361–369. doi:10.1111/j.1365-2222.2008.03154.x. PMC   2743132 . PMID   19134017.
  13. Janeway CA Jr.; et al. (2001). Immunobiology (electronic full text via NCBI Bookshelf) (5th ed.). Garland Publishing. ISBN   978-0-8153-3642-6.
  14. Böhm I, Speck U, Schild HH (April 2011). "Pilot study on basophil activation induced by contrast medium". Fundamental & Clinical Pharmacology. 25 (2): 267–76. doi:10.1111/j.1472-8206.2010.00826.x. PMID   20412314. S2CID   20951263.
  15. Grattan CE, Dawn G, Gibbs S, Francis DM (March 2003). "Blood basophil numbers in chronic ordinary urticaria and healthy controls: diurnal variation, influence of loratadine and prednisolone and relationship to disease activity". Clinical and Experimental Allergy. 33 (3): 337–41. doi:10.1046/j.1365-2222.2003.01589.x. PMID   12614448. S2CID   30477970.
  16. Schroeder JT (2009). Chapter 4 Basophils. Advances in Immunology. Vol. 101. pp. 123–161. doi:10.1016/S0065-2776(08)01004-3. ISBN   9780123747938. PMID   19231594.
  17. 1 2 Heneberg P (November 2011). "Mast cells and basophils: trojan horses of conventional lin- stem/progenitor cell isolates". Current Pharmaceutical Design. 17 (34): 3753–71. doi:10.2174/138161211798357881. PMID   22103846.
  18. Hoffmann HJ, et al. (2015). "The clinical utility of basophil activation testing in diagnosis and monitoring of allergic disease". Allergy. 70 (11): 1393–1405. doi:10.1111/all.12698. hdl: 1874/333232 . PMID   26198455. S2CID   24598924.
  19. Paranjape A, et al. (2020). "Oral Immunotherapy and Basophil and Mast Cell Reactivity in Food Allergy". Frontiers in Immunology. 11: 3228. doi: 10.3389/fimmu.2020.602660 . PMC   7768812 . PMID   33381123.