Dopamine beta-hydroxylase

Last updated

DBH
4zel.jpg
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases DBH , DBM, Dopamine beta-monooxygenase, dopamine beta-hydroxylase, Dopamine β-hydroxylase, ORTHYP1
External IDs OMIM: 609312; MGI: 94864; HomoloGene: 615; GeneCards: DBH; OMA:DBH - orthologs
EC number 1.14.17.1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000787

NM_138942

RefSeq (protein)

NP_000778

NP_620392

Location (UCSC) Chr 9: 133.64 – 133.66 Mb Chr 2: 27.06 – 27.07 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse
dopamine beta-monooxygenase
Identifiers
EC no. 1.14.17.1
CAS no. 9013-38-1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

Dopamine beta-hydroxylase (DBH), also known as dopamine beta-monooxygenase, is an enzyme (EC 1.14.17.1) that in humans is encoded by the DBH gene. Dopamine beta-hydroxylase catalyzes the conversion of dopamine to norepinephrine.

Contents

Dopamine is converted to norepinephrine by the enzyme dopamine b-hydroxylase; ascorbic acid serves as a cofactor Dopamine beta-monooxygenase reaction.svg
Dopamine is converted to norepinephrine by the enzyme dopamine β-hydroxylase; ascorbic acid serves as a cofactor

The three substrates of the enzyme are dopamine, vitamin C (ascorbate), and O2. The products are norepinephrine, dehydroascorbate, and H2O.

DBH is a 290 kDa copper-containing oxygenase consisting of four identical subunits, and its activity requires ascorbate as a cofactor. [5]

It is the only enzyme involved in the synthesis of small-molecule neurotransmitters that is membrane-bound, making norepinephrine the only known transmitter synthesized inside vesicles. It is expressed in noradrenergic neurons of the central nervous system (i.e. locus coeruleus) and peripheral nervous systems (i.e. sympathetic ganglia), as well as in chromaffin cells of the adrenal medulla.

Mechanism of catalysis

Based on the observations of what happens when there is no substrate, or oxygen, the following steps seem to constitute the hydroxylation reaction. [6] [7]

In the absence of oxygen, dopamine or other substrates, the enzyme and ascorbate mixture produces reduced enzyme and dehydroascorbate. Exposing the reduced enzyme to oxygen and dopamine results in oxidation of the enzyme and formation of noradrenaline and water, and this step doesn't require ascorbate. DBH mechanism.png
In the absence of oxygen, dopamine or other substrates, the enzyme and ascorbate mixture produces reduced enzyme and dehydroascorbate. Exposing the reduced enzyme to oxygen and dopamine results in oxidation of the enzyme and formation of noradrenaline and water, and this step doesn't require ascorbate.

Although details of DBH mechanism are yet to be confirmed, DBH is homologous to another enzyme, peptidylglycine α-hydroxylating monooxygenase (PHM). Because DBH and PHM share similar structures, it is possible to model DBH mechanism based on what is known about PHM mechanism. [8]

Substrate specificity

Dopamine beta-hydroxylase catalyzes the hydroxylation of not only dopamine but also other phenylethylamine derivatives when available. The minimum requirement seems to be the phenylethylamine skeleton: a benzene ring with a two-carbon side chain that terminates in an amino group. [6]

Assays for DBH activity in human serum and cerebrospinal fluid

DBH activity in human serum could be estimated by a spectrophotometric method [12] or with the aid of Ultra high performance liquid chromatography with Photo Diode Array detector (UHPLC-PDA). [13] A sensitive assay for the detection of DBH activity in cerebrospinal fluid using High-performance liquid chromatography with Electrochemical detector(HPLC-ECD) was also described earlier. [14]

Expression quantitative trait loci (eQTLs) at DBH loci

Genetic variants such as single-nucleotide polymorphisms(SNPs) [15] [16] at DBH loci were found to be associated with DBH activity and are well known expression quantitative trait loci. Allele variants at two regulatory SNPs namely rs1611115 [17] and rs1989787 [18] were shown to affect transcription of this gene. Mutations identified in dopamine beta hydroxylase deficiency [19] and non-synonymous SNPs such as rs6271 in this gene were found to cause defective secretion of the protein from the endoplasmic reticulum. [20]

Clinical significance

DBH primarily contributes to catecholamine and trace amine biosynthesis. It also participates in the metabolism of xenobiotics related to these substances; for example, the human DBH enzyme catalyzes the beta-hydroxylation of amphetamine and para-hydroxyamphetamine, producing norephedrine and para-hydroxynorephedrine respectively. [21] [22] [23]

DBH has been implicated as correlating factor in conditions associated with decision making and addictive drugs, e.g., alcoholism [24] and smoking, [25] attention deficit hyperactivity disorder, [26] schizophrenia, [27] and Alzheimer's disease. [28] Inadequate DBH is called dopamine beta hydroxylase deficiency.

The proximal promoter SNPs rs1989787 and rs1611115 were found to be associated with cognition in schizophrenia subjects. [29] Further these SNPs (rs1989787;rs1611115) and a distal promoter variant 19bp Ins/Del(rs141116007) were associated with scores of Abnormal Involuntary Movement Scale in tardive dyskinesia positive schizophrenia subjects. [29] Of the three variants, the proximal promoter SNP(rs1611115) was associated with Positive and Negative Syndrome Scale(PANSS) scores in tardive dyskinesia positive schizophrenia subjects. [29] The main effect of a putative splice variant in Dopamine beta-hydroxylase namely rs1108580 was found to be associated with Working memory Processing speed in a north Indian Schizophrenia case control study where the G/G genotype of that single-nucleotide polymorphism(SNP) was found to have lower cognitive scores than those with A/A and A/G genotypes. Furthermore the same SNP was associated with Emotion accuracy in healthy controls. [30]

Structure

Experimental DBH structural model based upon in silico prediction and physiochemical validation Models for Oligomer Structures of DBH.png
Experimental DBH structural model based upon in silico prediction and physiochemical validation

It was difficult to obtain a stable crystal of dopamine beta-hydroxylase. Hence an homology model based on the primary sequence and comparison to PHM is available. [31]

However, a crystal structure was also put forward in 2016. [32]

Regulation and inhibition

This protein may use the morpheein model of allosteric regulation. [33]

Inhibitors

Types of dopamine beta-hydroxylase inhibition[ clarification needed ][ citation needed ]
HYD [lower-alpha 1] HP [lower-alpha 2] QCA [lower-alpha 3] IQCA [lower-alpha 4] BI [lower-alpha 5] IAA [lower-alpha 6]
Competitive AscorbateAscorbateAscorbateAscorbateAscorbateAscorbate
Uncompetitive TyramineTyramine
MixedTyramineTyramineTyramineTyramine
Ascorbate is cofactor; tyramine is substitute for dopamine, DBH's namesake substrate
  1. hydralazine
  2. 2-hydrazinopyridine
  3. 2-quinoline-carboxylic acid
  4. l-isoquinolinecarboxylic acid
  5. 2,2'-biimidazole
  6. imidazole-4-acetic acid

DBH is inhibited by disulfiram, [34] tropolone, [35] and, most selectively, by nepicastat. [36] It is also inhibited by etamicastat and zamicastat. [37]

DBH is reversibly inhibited by l-2H-Phthalazine hydrazone (hydralazine; HYD), 2-1H-pyridinone hydrazone (2-hydrazinopyridine; HP), 2-quinoline-carboxylic acid (QCA), l-isoquinolinecarboxylic acid (IQCA), 2,2'-bi-lH-imidazole (2,2'-biimidazole; BI), and IH-imidazole-4-acetic acid (imidazole-4-acetic acid; IAA). HYD, QCA, and IAA are allosteric competitive. [38]

Nomenclature

The systematic name of this enzyme class is 3,4-dihydroxyphenethylamine, ascorbate:oxygen oxidoreductase (beta-hydroxylating).

Other names in common use include:

Related Research Articles

<span class="mw-page-title-main">Catecholamine</span> Class of chemical compounds

A catecholamine is a monoamine neurotransmitter, an organic compound that has a catechol and a side-chain amine.

<span class="mw-page-title-main">Monoamine neurotransmitter</span> Monoamine that acts as a neurotransmitter or neuromodulator

Monoamine neurotransmitters are neurotransmitters and neuromodulators that contain one amino group connected to an aromatic ring by a two-carbon chain (such as -CH2-CH2-). Examples are dopamine, norepinephrine and serotonin.

<span class="mw-page-title-main">Phenethylamine</span> Organic compound, a stimulant in humans

Phenethylamine (PEA) is an organic compound, natural monoamine alkaloid, and trace amine, which acts as a central nervous system stimulant in humans. In the brain, phenethylamine regulates monoamine neurotransmission by binding to trace amine-associated receptor 1 (TAAR1) and inhibiting vesicular monoamine transporter 2 (VMAT2) in monoamine neurons. To a lesser extent, it also acts as a neurotransmitter in the human central nervous system. In mammals, phenethylamine is produced from the amino acid L-phenylalanine by the enzyme aromatic L-amino acid decarboxylase via enzymatic decarboxylation. In addition to its presence in mammals, phenethylamine is found in many other organisms and foods, such as chocolate, especially after microbial fermentation.

<span class="mw-page-title-main">Dextroamphetamine</span> CNS stimulant and isomer of amphetamine

Dextroamphetamine (INN:dexamfetamine) is a potent central nervous system (CNS) stimulant and enantiomer of amphetamine that is prescribed for the treatment of attention deficit hyperactivity disorder (ADHD) and narcolepsy. It is also used as an athletic performance and cognitive enhancer, and recreationally as an aphrodisiac and euphoriant. Dextroamphetamine is generally regarded as the prototypical stimulant.

<span class="mw-page-title-main">Phenylpropanolamine</span> Sympathomimetic agent

Phenylpropanolamine (PPA), sold under many brand names, is a sympathomimetic agent which is used as a decongestant and appetite suppressant. It was previously commonly used in prescription and over-the-counter cough and cold preparations. The medication is taken by mouth.

<span class="mw-page-title-main">Norepinephrine transporter</span> Protein-coding gene in the species Homo sapiens

The norepinephrine transporter (NET), also known as noradrenaline transporter (NAT), is a protein that in humans is encoded by the solute carrier family 6 member 2 (SLC6A2) gene.

<span class="mw-page-title-main">Phenylacetone</span> Chemical compound

Phenylacetone, also known as phenyl-2-propanone, is an organic compound with the chemical formula C6H5CH2COCH3. It is a colorless oil that is soluble in organic solvents. It is a mono-substituted benzene derivative, consisting of an acetone attached to a phenyl group. As such, its systematic IUPAC name is 1-phenyl-2-propanone.

<span class="mw-page-title-main">4-Hydroxyamphetamine</span> Group of stereoisomers

Hydroxyamphetamine, also known as 4-hydroxyamphetamine or norpholedrine and sold under the brand names Paredrine and Paremyd among others, is a sympathomimetic medication used in eye drops to dilate the pupil for eye examinations.

<span class="mw-page-title-main">Tyrosine hydroxylase</span> Enzyme found in Homo sapiens that converts l-tyrosine to l-dopa, the precursor of cathecolamines

Tyrosine hydroxylase or tyrosine 3-monooxygenase is the enzyme responsible for catalyzing the conversion of the amino acid L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA). It does so using molecular oxygen (O2), as well as iron (Fe2+) and tetrahydrobiopterin as cofactors. L-DOPA is a precursor for dopamine, which, in turn, is a precursor for the important neurotransmitters norepinephrine (noradrenaline) and epinephrine (adrenaline). Tyrosine hydroxylase catalyzes the rate limiting step in this synthesis of catecholamines. In humans, tyrosine hydroxylase is encoded by the TH gene, and the enzyme is present in the central nervous system (CNS), peripheral sympathetic neurons and the adrenal medulla. Tyrosine hydroxylase, phenylalanine hydroxylase and tryptophan hydroxylase together make up the family of aromatic amino acid hydroxylases (AAAHs).

<span class="mw-page-title-main">21-Hydroxylase</span> Human enzyme that hydroxylates steroids

Steroid 21-hydroxylase is a protein that in humans is encoded by the CYP21A2 gene. The protein is an enzyme that hydroxylates steroids at the C21 position on the molecule. Naming conventions for enzymes are based on the substrate acted upon and the chemical process performed. Biochemically, this enzyme is involved in the biosynthesis of the adrenal gland hormones aldosterone and cortisol, which are important in blood pressure regulation, sodium homeostasis and blood sugar control. The enzyme converts progesterone and 17α-hydroxyprogesterone into 11-deoxycorticosterone and 11-deoxycortisol, respectively, within metabolic pathways which in humans ultimately lead to aldosterone and cortisol creation—deficiency in the enzyme may cause congenital adrenal hyperplasia.

<span class="mw-page-title-main">Steroid 11β-hydroxylase</span> Protein found in mammals

Steroid 11β-hydroxylase, also known as steroid 11β-monooxygenase, is a steroid hydroxylase found in the zona glomerulosa and zona fasciculata of the adrenal cortex. Named officially the cytochrome P450 11B1, mitochondrial, it is a protein that in humans is encoded by the CYP11B1 gene. The enzyme is involved in the biosynthesis of adrenal corticosteroids by catalyzing the addition of hydroxyl groups during oxidation reactions.

<span class="mw-page-title-main">Lisdexamfetamine</span> Central nervous system stimulant prodrug

Lisdexamfetamine, sold under the brand names Vyvanse and Elvanse among others, is a stimulant medication that is used to treat attention deficit hyperactivity disorder (ADHD) in children and adults and for moderate-to-severe binge eating disorder in adults. Lisdexamfetamine is taken by mouth. Its effects generally begin within two hours and last for up to 14 hours.

<span class="mw-page-title-main">Kynurenine 3-monooxygenase</span> Enzyme

In enzymology, a kynurenine 3-monooxygenase (EC 1.14.13.9) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Nepicastat</span> Chemical compound

Nepicastat is an inhibitor of dopamine beta-hydroxylase (DBH), an enzyme that catalyzes the conversion of dopamine to norepinephrine.

<span class="mw-page-title-main">Dopamine beta hydroxylase deficiency</span> Medical condition

Dopamine beta (β)-hydroxylase deficiency is a human medical condition involving inadequate dopamine beta-hydroxylase. It is characterized by increased amounts of serum dopamine and the absence of norepinephrine (NE) and epinephrine.

<span class="mw-page-title-main">3,4-Dihydroxyphenylacetaldehyde</span> Chemical compound

3,4-Dihydroxyphenylacetaldehyde (DOPAL), also known as dopamine aldehyde, is a metabolite of the monoamine neurotransmitter dopamine formed by monoamine oxidase (MAO).

<span class="mw-page-title-main">Monooxygenase DBH-like 1</span> Protein-coding gene in the species Homo sapiens

DBH-like monooxygenase protein 1, also known as monooxygenase X, is an enzyme that in humans is encoded by the MOXD1 gene.

<i>p</i>-Hydroxynorephedrine Chemical compound

p-Hydroxynorephedrine is the para-hydroxy analog of norephedrine and an active sympathomimetic metabolite of amphetamine in humans. When it occurs as a metabolite of amphetamine, it is produced from both p-hydroxyamphetamine and norephedrine.

<span class="mw-page-title-main">4-Hydroxyphenylacetone</span> Chemical compound

4-Hydroxyphenylacetone is the para-hydroxy analog of phenylacetone, an inactive metabolite of amphetamine in humans. When it occurs as a metabolite of amphetamine, it is produced directly from the inactive metabolite phenylacetone.

Cytochrome P450 omega hydroxylases, also termed cytochrome P450 ω-hydroxylases, CYP450 omega hydroxylases, CYP450 ω-hydroxylases, CYP omega hydroxylase, CYP ω-hydroxylases, fatty acid omega hydroxylases, cytochrome P450 monooxygenases, and fatty acid monooxygenases, are a set of cytochrome P450-containing enzymes that catalyze the addition of a hydroxyl residue to a fatty acid substrate. The CYP omega hydroxylases are often referred to as monoxygenases; however, the monooxygenases are CYP450 enzymes that add a hydroxyl group to a wide range of xenobiotic and naturally occurring endobiotic substrates, most of which are not fatty acids. The CYP450 omega hydroxylases are accordingly better viewed as a subset of monooxygenases that have the ability to hydroxylate fatty acids. While once regarded as functioning mainly in the catabolism of dietary fatty acids, the omega oxygenases are now considered critical in the production or break-down of fatty acid-derived mediators which are made by cells and act within their cells of origin as autocrine signaling agents or on nearby cells as paracrine signaling agents to regulate various functions such as blood pressure control and inflammation.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000123454 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000000889 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Rush RA, Geffen LB (1980). "Dopamine beta-hydroxylase in health and disease". Critical Reviews in Clinical Laboratory Sciences. 12 (3): 241–77. doi:10.3109/10408368009108731. PMID   6998654.
  6. 1 2 Kaufman S, Bridgers WF, Baron J (1968). "The Mechanism of Action of Dopamine β-Hydroxylase". Oxidation of Organic Compounds. Advances in Chemistry. Vol. 77. pp. 172–176. doi:10.1021/ba-1968-0077.ch073. ISBN   0-8412-0078-5.
  7. Friedman S, Kaufman S (May 1966). "An electron paramagnetic resonance study of 3,4-dihydroxyphenylethylamine beta-hydroxylase". The Journal of Biological Chemistry. 241 (10): 2256–9. doi: 10.1016/S0021-9258(18)96614-7 . PMID   4287853.
  8. Prigge ST, Mains RE, Eipper BA, Amzel LM (August 2000). "New insights into copper monooxygenases and peptide amidation: structure, mechanism and function". Cellular and Molecular Life Sciences. 57 (8–9): 1236–59. doi:10.1007/pl00000763. PMC   11146793 . PMID   11028916. S2CID   12738480.
  9. Broadley KJ (March 2010). "The vascular effects of trace amines and amphetamines". Pharmacology & Therapeutics. 125 (3): 363–375. doi:10.1016/j.pharmthera.2009.11.005. PMID   19948186.
  10. Lindemann L, Hoener MC (May 2005). "A renaissance in trace amines inspired by a novel GPCR family". Trends in Pharmacological Sciences. 26 (5): 274–281. doi:10.1016/j.tips.2005.03.007. PMID   15860375.
  11. Wang X, Li J, Dong G, Yue J (February 2014). "The endogenous substrates of brain CYP2D". European Journal of Pharmacology. 724: 211–218. doi:10.1016/j.ejphar.2013.12.025. PMID   24374199.
  12. Nagatsu T, Udenfriend S (1972). "Photometric Assay of Dopamine-β-Hydroxylase Activity in Human Blood". Clinical Chemistry. 18 (9): 980–983. doi: 10.1093/clinchem/18.9.980 . PMID   5052101.
  13. Punchaichira TJ, Deshpande SN, Thelma BK (2018). "Determination of Dopamine-β-hydroxylase Activity in Human Serum Using UHPLC-PDA Detection". Neurochemical Research. 43 (12): 2324–2332. doi:10.1007/s11064-018-2653-1. PMID   30357655. S2CID   53024826.
  14. Matsui H, Kato T, Yamamoto C, Fujita K, Nagatsu T (1981). "Highly sensitive assay for dopamine-beta-hydroxylase activity in human cerebrospinal fluid by high performance liquid chromatography-electrochemical detection: properties of the enzyme". Journal of Neurochemistry. 37 (2): 289–296. doi:10.1111/j.1471-4159.1981.tb00454.x. PMID   7264660. S2CID   42736106.
  15. Zabetian CP, Anderson GM, Buxbaum SG, Elston RC, Ichinose H, Nagatsu T, Kim KS, Kim CH, Malison RT, Gelernter J, Cubells JF (2001). "A quantitative-trait analysis of human plasma-dopamine beta-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus". American Journal of Human Genetics. 68 (2): 515–22. doi:10.1086/318198. PMC   1235285 . PMID   11170900.
  16. Punchaichira TJ, Prasad S, Deshpande SN, Thelma BK (2016). "Deep sequencing identifies novel regulatory variants in the distal promoter region of the dopamine-beta-hydroxylase gene". Pharmacogenetics and Genomics. 26 (7): 311–23. doi:10.1097/FPC.0000000000000214. PMID   26959714. S2CID   205601803.
  17. Chen Y, Wen G, Rao F, Zhang K, Wang L, Rodriguez-Flores JL, Sanchez, AP, Mahata M, Taupenot L, Sun P, Mahata SK, Tayo B, Schork NJ, Ziegler MG, Hamilton BA, O'Connor DT (2010). "Human dopamine beta-hydroxylase (DBH) regulatory polymorphism that influences enzymatic activity, autonomic function, and blood pressure". Journal of Hypertension. 28 (1): 76–86. doi:10.1097/HJH.0b013e328332bc87. PMC   2860271 . PMID   20009769.
  18. Chen Y, Zhang K, Wen G, Rao F, Sanchez AP, Wang L, Rodriguez-Flores JL, Mahata M, Mahata SK, Waalen J, Ziegler MG, Hamilton BA, O'Connor DT (2011). "Human dopamine beta-hydroxylase promoter variant alters transcription in chromaffin cells, enzyme secretion, and blood pressure". American Journal of Hypertension. 24 (1): 24–32. doi:10.1038/ajh.2010.186. PMC   4906639 . PMID   20814407.
  19. Kim CH, Leung A, Huh YH, Yang E, Kim DJ, Leblanc P, Ryu H, Kim K, Kim DW, Garland EM, Raj SR, Biaggioni I, Robertson D, Kim KS (2011). "Norepinephrine deficiency is caused by combined abnormal mRNA processing and defective protein trafficking of dopamine beta-hydroxylase". Journal of Biological Chemistry. 286 (11): 9196–204. doi: 10.1074/jbc.M110.192351 . PMC   3059068 . PMID   21209083.
  20. Punchaichira TJ, Dey SK, Mukhopadhyay A, Kundu S, Thelma BK (2017). "Characterization of SNPs in the dopamine-beta-hydroxylase gene providing new insights into its structure-function relationship". Neurogenetics. 18 (3): 155–168. doi:10.1007/s10048-017-0519-3. PMID   28707163. S2CID   5259134.
  21. Glennon RA (2013). "Phenylisopropylamine stimulants: amphetamine-related agents". In Lemke TL, Williams DA, Roche VF, Zito W (eds.). Foye's principles of medicinal chemistry (7th ed.). Philadelphia, US: Wolters Kluwer Health/Lippincott Williams & Wilkins. pp. 646–648. ISBN   9781609133450. Archived from the original on 8 March 2024. Retrieved 11 September 2015. The phase 1 metabolism of amphetamine analogs is catalyzed by two systems: cytochrome P450 and flavin monooxygenase. ... Amphetamine can also undergo aromatic hydroxylation to p-hydroxyamphetamine.  ... Subsequent oxidation at the benzylic position by DA β-hydroxylase affords p-hydroxynorephedrine. Alternatively, direct oxidation of amphetamine by DA β-hydroxylase can afford norephedrine.
  22. Taylor KB (January 1974). "Dopamine-beta-hydroxylase. Stereochemical course of the reaction" (PDF). J. Biol. Chem. 249 (2): 454–458. doi: 10.1016/S0021-9258(19)43051-2 . PMID   4809526. Archived (PDF) from the original on 7 October 2018. Retrieved 6 November 2014. Dopamine-β-hydroxylase catalyzed the removal of the pro-R hydrogen atom and the production of 1-norephedrine, (2S,1R)-2-amino-1-hydroxyl-1-phenylpropane, from d-amphetamine.
  23. Horwitz D, Alexander RW, Lovenberg W, Keiser HR (May 1973). "Human serum dopamine-β-hydroxylase. Relationship to hypertension and sympathetic activity". Circ. Res. 32 (5): 594–599. doi: 10.1161/01.RES.32.5.594 . PMID   4713201. Subjects with exceptionally low levels of serum dopamine-β-hydroxylase activity showed normal cardiovascular function and normal β-hydroxylation of an administered synthetic substrate, hydroxyamphetamine.
  24. Mutschler J, Abbruzzese E, Witt SH, Dirican G, Nieratschker V, Frank J, Grosshans M, Rietschel M, Kiefer F (August 2012). "Functional polymorphism of the dopamine β-hydroxylase gene is associated with increased risk of disulfiram-induced adverse effects in alcohol-dependent patients". Journal of Clinical Psychopharmacology. 32 (4): 578–80. doi:10.1097/jcp.0b013e31825ddbe6. PMID   22760354.
  25. Ella E, Sato N, Nishizawa D, Kageyama S, Yamada H, Kurabe N, Ishino K, Tao H, Tanioka F, Nozawa A, Renyin C, Shinmura K, Ikeda K, Sugimura H (June 2012). "Association between dopamine beta hydroxylase rs5320 polymorphism and smoking behaviour in elderly Japanese". Journal of Human Genetics. 57 (6): 385–90. doi: 10.1038/jhg.2012.40 . PMID   22513716.
  26. Bhaduri N, Sinha S, Chattopadhyay A, Gangopadhyay PK, Singh M, Mukhopadhyay KK (February 2005). "Analysis of polymorphisms in the dopamine beta hydroxylase gene: association with attention deficit hyperactivity disorder in Indian children". Indian Pediatrics. 42 (2): 123–9. PMID   15767706.
  27. Cubells JF, Sun X, Li W, Bonsall RW, McGrath JA, Avramopoulos D, Lasseter VK, Wolyniec PS, Tang YL, Mercer K, Pulver AE, Elston RC (November 2011). "Linkage analysis of plasma dopamine β-hydroxylase activity in families of patients with schizophrenia". Human Genetics. 130 (5): 635–43. doi:10.1007/s00439-011-0989-6. PMC   3193571 . PMID   21509519.
  28. Combarros O, Warden DR, Hammond N, Cortina-Borja M, Belbin O, Lehmann MG, Wilcock GK, Brown K, Kehoe PG, Barber R, Coto E, Alvarez V, Deloukas P, Gwilliam R, Heun R, Kölsch H, Mateo I, Oulhaj A, Arias-Vásquez A, Schuur M, Aulchenko YS, Ikram MA, Breteler MM, van Duijn CM, Morgan K, Smith AD, Lehmann DJ (2010). "The dopamine β-hydroxylase -1021C/T polymorphism is associated with the risk of Alzheimer's disease in the Epistasis Project". BMC Medical Genetics. 11 (161): 162. doi: 10.1186/1471-2350-11-162 . PMC   2994840 . PMID   21070631.
  29. 1 2 3 Punchaichira TJ, Mukhopadhyay A, Kukshal P, Bhatia T, Deshpande SN, Thelma BK (2020). "Association of regulatory variants of dopamine β-hydroxylase with cognition and tardive dyskinesia in schizophrenia subjects". Journal of Psychopharmacology. 34 (3): 358–369. doi:10.1177/0269881119895539. PMC   7150076 . PMID   31913053.
  30. Punchaichira TJ, Kukshal P, Bhatia T, Deshpande SN (2023). "Effect of rs1108580 of DBH and rs1006737 of CACNA1C on Cognition and Tardive Dyskinesia in a North Indian Schizophrenia Cohort". Molecular Neurobiology. 60 (12): 6826–6839. doi:10.1007/s12035-023-03496-4. PMID   37493923. S2CID   260162784.
  31. 1 2 Kapoor A, Shandilya M, Kundu S (2011). "Structural insight of dopamine β-hydroxylase, a drug target for complex traits, and functional significance of exonic single nucleotide polymorphisms". PLOS ONE. 6 (10): e26509. Bibcode:2011PLoSO...626509K. doi: 10.1371/journal.pone.0026509 . PMC   3197665 . PMID   22028891.
  32. Vendelboe TV, Harris P, Zhao Y, Walter TS, Harlos K, Omari KE, Christensen HM (2016). "The crystal structure of human dopamine β-hydroxylase at 2.9 Å resolution". Science Advances. 2 (4): e1500980. Bibcode:2016SciA....2E0980V. doi:10.1126/sciadv.1500980. PMC   4846438 . PMID   27152332.
  33. Selwood T, Jaffe EK (March 2012). "Dynamic dissociating homo-oligomers and the control of protein function". Archives of Biochemistry and Biophysics. 519 (2): 131–43. doi:10.1016/j.abb.2011.11.020. PMC   3298769 . PMID   22182754.
  34. Goldstein M, Anagnoste B, Lauber E, Mckeregham MR (July 1964). "Inhibition of dopamine- β -hydroxylase by disulfiram". Life Sciences. 3 (7): 763–7. doi:10.1016/0024-3205(64)90031-1. PMID   14203977.
  35. Goldstein M, Lauber E, Mckereghan MR (July 1964). "The inhibitionof dopamine-β-hydroxylase by tropolone and other chelating agents". Biochemical Pharmacology. 13 (7): 1103–6. doi:10.1016/0006-2952(64)90109-1. PMID   14201135.
  36. Stanley WC, Li B, Bonhaus DW, Johnson LG, Lee K, Porter S, Walker K, Martinez G, Eglen RM, Whiting RL, Hegde SS (August 1997). "Catecholamine modulatory effects of nepicastat (RS-25560-197), a novel, potent and selective inhibitor of dopamine-beta-hydroxylase". British Journal of Pharmacology. 121 (8): 1803–9. doi:10.1038/sj.bjp.0701315. PMC   1564872 . PMID   9283721.
  37. Dey SK, Saini M, Prabhakar P, Kundu S (September 2020). "Dopamine β hydroxylase as a potential drug target to combat hypertension". Expert Opin Investig Drugs. 29 (9): 1043–1057. doi:10.1080/13543784.2020.1795830. PMID   32658551.
  38. Townes S, Titone C, Rosenberg RC (February 1990). "Inhibition of dopamine beta-hydroxylase by bidentate chelating agents". Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1037 (2): 240–7. doi:10.1016/0167-4838(90)90174-E. PMID   2306475.

Further reading