Finite intersection property

Last updated

In general topology, a branch of mathematics, a non-empty family A of subsets of a set is said to have the finite intersection property (FIP) if the intersection over any finite subcollection of is non-empty. It has the strong finite intersection property (SFIP) if the intersection over any finite subcollection of is infinite. Sets with the finite intersection property are also called centered systems and filter subbases. [1]

Contents

The finite intersection property can be used to reformulate topological compactness in terms of closed sets; this is its most prominent application. Other applications include proving that certain perfect sets are uncountable, and the construction of ultrafilters.

Definition

Let be a set and a nonempty family of subsets of ; that is, is a subset of the power set of . Then is said to have the finite intersection property if every nonempty finite subfamily has nonempty intersection; it is said to have the strong finite intersection property if that intersection is always infinite. [1]

In symbols, has the FIP if, for any choice of a finite nonempty subset of , there must exist a point

Likewise, has the SFIP if, for every choice of such , there are infinitely many such . [1]

In the study of filters, the common intersection of a family of sets is called a kernel, from much the same etymology as the sunflower. Families with empty kernel are called free; those with nonempty kernel, fixed. [2]

Families of examples and non-examples

The empty set cannot belong to any collection with the finite intersection property.

A sufficient condition for the FIP intersection property is a nonempty kernel. The converse is generally false, but holds for finite families; that is, if is finite, then has the finite intersection property if and only if it is fixed.

Pairwise intersection

The finite intersection property is strictly stronger than pairwise intersection; the family has pairwise intersections, but not the FIP.

More generally, let be a positive integer greater than unity, , and . Then any subset of with fewer than elements has nonempty intersection, but lacks the FIP.

End-type constructions

If is a decreasing sequence of non-empty sets, then the family has the finite intersection property (and is even a π–system). If the inclusions are strict, then admits the strong finite intersection property as well.

More generally, any that is totally ordered by inclusion has the FIP.

At the same time, the kernel of may be empty: if , then the kernel of is the empty set. Similarly, the family of intervals also has the (S)FIP, but empty kernel.

"Generic" sets and properties

The family of all Borel subsets of with Lebesgue measure has the FIP, as does the family of comeagre sets. If is an infinite set, then the Fréchet filter (the family ) has the FIP. All of these are free filters; they are upwards-closed and have empty infinitary intersection. [3] [4]

If and, for each positive integer the subset is precisely all elements of having digit in the th decimal place, then any finite intersection of is non-empty — just take in those finitely many places and in the rest. But the intersection of for all is empty, since no element of has all zero digits.

Extension of the ground set

The (strong) finite intersection property is a characteristic of the family , not the ground set . If a family on the set admits the (S)FIP and , then is also a family on the set with the FIP (resp. SFIP).

Generated filters and topologies

If are sets with then the family has the FIP; this family is called the principal filter on generated by . The subset has the FIP for much the same reason: the kernels contain the non-empty set . If is an open interval, then the set is in fact equal to the kernels of or , and so is an element of each filter. But in general a filter's kernel need not be an element of the filter.

A proper filter on a set has the finite intersection property. Every neighbourhood subbasis at a point in a topological space has the FIP, and the same is true of every neighbourhood basis and every neighbourhood filter at a point (because each is, in particular, also a neighbourhood subbasis).

Relationship to π-systems and filters

A π–system is a non-empty family of sets that is closed under finite intersections. The set

of all finite intersections of one or more sets from is called the π–system generated by , because it is the smallest π–system having as a subset. The upward closure of in is the set

For any family , the finite intersection property is equivalent to any of the following:

Applications

Compactness

The finite intersection property is useful in formulating an alternative definition of compactness:

Theorem  A space is compact if and only if every family of closed subsets having the finite intersection property has non-empty intersection. [5] [6]

This formulation of compactness is used in some proofs of Tychonoff's theorem.

Uncountability of perfect spaces

Another common application is to prove that the real numbers are uncountable.

Theorem  Let be a non-empty compact Hausdorff space that satisfies the property that no one-point set is open. Then is uncountable.

All the conditions in the statement of the theorem are necessary:

  1. We cannot eliminate the Hausdorff condition; a countable set (with at least two points) with the indiscrete topology is compact, has more than one point, and satisfies the property that no one point sets are open, but is not uncountable.
  2. We cannot eliminate the compactness condition, as the set of rational numbers shows.
  3. We cannot eliminate the condition that one point sets cannot be open, as any finite space with the discrete topology shows.
Proof

We will show that if is non-empty and open, and if is a point of then there is a neighbourhood whose closure does not contain (' may or may not be in ). Choose different from (if then there must exist such a for otherwise would be an open one point set; if this is possible since is non-empty). Then by the Hausdorff condition, choose disjoint neighbourhoods and of and respectively. Then will be a neighbourhood of contained in whose closure doesn't contain as desired.

Now suppose is a bijection, and let denote the image of Let be the first open set and choose a neighbourhood whose closure does not contain Secondly, choose a neighbourhood whose closure does not contain Continue this process whereby choosing a neighbourhood whose closure does not contain Then the collection satisfies the finite intersection property and hence the intersection of their closures is non-empty by the compactness of Therefore, there is a point in this intersection. No can belong to this intersection because does not belong to the closure of This means that is not equal to for all and is not surjective; a contradiction. Therefore, is uncountable.

Corollary  Every closed interval with is uncountable. Therefore, is uncountable.

Corollary  Every perfect, locally compact Hausdorff space is uncountable.

Proof

Let be a perfect, compact, Hausdorff space, then the theorem immediately implies that is uncountable. If is a perfect, locally compact Hausdorff space that is not compact, then the one-point compactification of is a perfect, compact Hausdorff space. Therefore, the one point compactification of is uncountable. Since removing a point from an uncountable set still leaves an uncountable set, is uncountable as well.

Ultrafilters

Let be non-empty, having the finite intersection property. Then there exists an ultrafilter (in ) such that This result is known as the ultrafilter lemma. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in Euclidean space, but may not be equivalent in other topological spaces.

<span class="mw-page-title-main">Filter (mathematics)</span> In mathematics, a special subset of a partially ordered set

In mathematics, a filter or order filter is a special subset of a partially ordered set (poset). Filters appear in order and lattice theory, but can also be found in topology, from which they originate. The dual notion of a filter is an order ideal.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

<span class="mw-page-title-main">Ultrafilter</span> Maximal proper filter

In the mathematical field of order theory, an ultrafilter on a given partially ordered set is a certain subset of namely a maximal filter on that is, a proper filter on that cannot be enlarged to a bigger proper filter on

In the mathematical field of topology, a uniform space is a set with a uniform structure. Uniform spaces are topological spaces with additional structure that is used to define uniform properties such as completeness, uniform continuity and uniform convergence. Uniform spaces generalize metric spaces and topological groups, but the concept is designed to formulate the weakest axioms needed for most proofs in analysis.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In mathematics, a base for the topology τ of a topological space (X, τ) is a family of open subsets of X such that every open set of the topology is equal to the union of some sub-family of . For example, the set of all open intervals in the real number line is a basis for the Euclidean topology on because every open interval is an open set, and also every open subset of can be written as a union of some family of open intervals.

In mathematics, Tychonoff's theorem states that the product of any collection of compact topological spaces is compact with respect to the product topology. The theorem is named after Andrey Nikolayevich Tikhonov, who proved it first in 1930 for powers of the closed unit interval and in 1935 stated the full theorem along with the remark that its proof was the same as for the special case. The earliest known published proof is contained in a 1935 article of Tychonoff, A., "Uber einen Funktionenraum", Mathematical Annals, 111, pp. 762–766 (1935).

In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful method for constructing models of any set of sentences that is finitely consistent.

In set theory, the kernel of a function may be taken to be either

In mathematics, a cofinite subset of a set is a subset whose complement in is a finite set. In other words, contains all but finitely many elements of If the complement is not finite, but it is countable, then one says the set is cocountable.

In topology, a subbase for a topological space with topology is a subcollection of that generates in the sense that is the smallest topology containing A slightly different definition is used by some authors, and there are other useful equivalent formulations of the definition; these are discussed below.

In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.

In mathematics, a field of sets is a mathematical structure consisting of a pair consisting of a set and a family of subsets of called an algebra over that contains the empty set as an element, and is closed under the operations of taking complements in finite unions, and finite intersections.

In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size”.

In mathematics, set-theoretic topology is a subject that combines set theory and general topology. It focuses on topological questions that are independent of Zermelo–Fraenkel set theory (ZFC).

In mathematics, a filter on a set is a family of subsets such that:

  1. and
  2. if and ,then
  3. If ,and ,then
<span class="mw-page-title-main">Filters in topology</span> Use of filters to describe and characterize all basic topological notions and results.

Filters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such a convergence, continuity, compactness, and more. Filters, which are special families of subsets of some given set, also provide a common framework for defining various types of limits of functions such as limits from the left/right, to infinity, to a point or a set, and many others. Special types of filters called ultrafilters have many useful technical properties and they may often be used in place of arbitrary filters.

<span class="mw-page-title-main">Ultrafilter (set theory)</span> Maximal proper filter

In the mathematical field of set theory, an ultrafilter is a maximal proper filter: it is a filter on a given non-empty set which is a certain type of non-empty family of subsets of that is not equal to the power set of and that is also "maximal" in that there does not exist any other proper filter on that contains it as a proper subset. Said differently, a proper filter is called an ultrafilter if there exists exactly one proper filter that contains it as a subset, that proper filter (necessarily) being itself.

References

Notes

  1. 1 2 A filter or prefilter on a set is proper or non-degenerate if it does not contain the empty set as an element. Like many − but not all − authors, this article will require non-degeneracy as part of the definitions of "prefilter" and "filter".

Citations

  1. 1 2 3 4 5 Joshi 1983, pp. 242−248.
  2. Dolecki & Mynard 2016, pp. 27–29, 33–35.
  3. Bourbaki 1987, pp. 57–68.
  4. Wilansky 2013, pp. 44–46.
  5. Munkres 2000, p. 169.
  6. A space is compact iff any family of closed sets having fip has non-empty intersection at PlanetMath.
  7. Csirmaz, László; Hajnal, András (1994), Matematikai logika (In Hungarian), Budapest: Eötvös Loránd University .

General sources