Secant line

Last updated

In geometry, a secant is a line that intersects a curve at a minimum of two distinct points. [1] The word secant comes from the Latin word secare, meaning to cut. [2] In the case of a circle, a secant intersects the circle at exactly two points. A chord is the line segment determined by the two points, that is, the interval on the secant whose ends are the two points. [3]

Contents

Circles

Common lines and line segments on a circle, including a secant CIRCLE LINES-en.svg
Common lines and line segments on a circle, including a secant

A straight line can intersect a circle at zero, one, or two points. A line with intersections at two points is called a secant line, at one point a tangent line and at no points an exterior line. A chord is the line segment that joins two distinct points of a circle. A chord is therefore contained in a unique secant line and each secant line determines a unique chord.

In rigorous modern treatments of plane geometry, results that seem obvious and were assumed (without statement) by Euclid in his treatment, are usually proved.

For example, Theorem (Elementary Circular Continuity): [4] If is a circle and a line that contains a point A that is inside and a point B that is outside of then is a secant line for .

In some situations phrasing results in terms of secant lines instead of chords can help to unify statements. As an example of this consider the result: [5]

If two secant lines contain chords AB and CD in a circle and intersect at a point P that is not on the circle, then the line segment lengths satisfy APPB = CPPD.

If the point P lies inside the circle this is Euclid III.35, but if the point is outside the circle the result is not contained in the Elements. However, Robert Simson following Christopher Clavius demonstrated this result, sometimes called the intersecting secants theorem, in their commentaries on Euclid. [6]

Curves

For curves more complicated than simple circles, the possibility that a line that intersects a curve in more than two distinct points arises. Some authors define a secant line to a curve as a line that intersects the curve in two distinct points. This definition leaves open the possibility that the line may have other points of intersection with the curve. When phrased this way the definitions of a secant line for circles and curves are identical and the possibility of additional points of intersection just does not occur for a circle.

Secants and tangents

Secants may be used to approximate the tangent line to a curve, at some point P, if it exists. Define a secant to a curve by two points, P and Q, with P fixed and Q variable. As Q approaches P along the curve, if the slope of the secant approaches a limit value, then that limit defines the slope of the tangent line at P. [1] The secant lines PQ are the approximations to the tangent line. In calculus, this idea is the geometric definition of the derivative.

The tangent line at point P is a secant line of the curve Secanttangent.svg
The tangent line at point P is a secant line of the curve

A tangent line to a curve at a point P may be a secant line to that curve if it intersects the curve in at least one point other than P. Another way to look at this is to realize that being a tangent line at a point P is a local property, depending only on the curve in the immediate neighborhood of P, while being a secant line is a global property since the entire domain of the function producing the curve needs to be examined.

Sets and n-secants

The concept of a secant line can be applied in a more general setting than Euclidean space. Let K be a finite set of k points in some geometric setting. A line will be called an n-secant of K if it contains exactly n points of K. [7] For example, if K is a set of 50 points arranged on a circle in the Euclidean plane, a line joining two of them would be a 2-secant (or bisecant) and a line passing through only one of them would be a 1-secant (or unisecant). A unisecant in this example need not be a tangent line to the circle.

This terminology is often used in incidence geometry and discrete geometry. For instance, the Sylvester–Gallai theorem of incidence geometry states that if n points of Euclidean geometry are not collinear then there must exist a 2-secant of them. And the original orchard-planting problem of discrete geometry asks for a bound on the number of 3-secants of a finite set of points.

Finiteness of the set of points is not essential in this definition, as long as each line can intersect the set in only a finite number of points.

See also

Related Research Articles

<span class="mw-page-title-main">Circle</span> Simple curve of Euclidean geometry

A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. The distance between any point of the circle and the centre is called the radius.

<span class="mw-page-title-main">Tangent</span> In mathematics, straight line touching a plane curve without crossing it

In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is tangent to the curve y = f(x) at a point x = c if the line passes through the point (c, f(c)) on the curve and has slope f'(c), where f' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.

<span class="mw-page-title-main">Perpendicular</span> Relationship between two lines that meet at a right angle (90 degrees)

In elementary geometry, two geometric objects are perpendicular if their intersection forms right angles at the point of intersection called a foot. The condition of perpendicularity may be represented graphically using the perpendicular symbol, ⟂. Perpendicular intersections can happen between two lines, between a line and a plane, and between two planes.

<span class="mw-page-title-main">Hyperbolic geometry</span> Non-Euclidean geometry

In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points to Euclidean points, and vice-versa.

In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied. Inversion seems to have been discovered by a number of people contemporaneously, including Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs and Ingram (1842-3) and Kelvin (1845).

In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel. However, two noncoplanar lines are called skew lines. Line segments and Euclidean vectors are parallel if they have the same direction.

<span class="mw-page-title-main">Line (geometry)</span> Straight figure with zero width and depth

In geometry, a straight line, usually abbreviated line, is an infinitely long object with no width, depth, or curvature, an idealization of such physical objects as a straightedge, a taut string, or a ray of light. Lines are spaces of dimension one, which may be embedded in spaces of dimension two, three, or higher. The word line may also refer, in everyday life, to a line segment, which is a part of a line delimited by two points.

<span class="mw-page-title-main">Power of a point</span> Relative distance of a point from a circle

In elementary plane geometry, the power of a point is a real number that reflects the relative distance of a given point from a given circle. It was introduced by Jakob Steiner in 1826.

<span class="mw-page-title-main">Bitangent</span> Line tangent to a curve at two locations

In geometry, a bitangent to a curve C is a line L that touches C in two distinct points P and Q and that has the same direction as C at these points. That is, L is a tangent line at P and at Q.

In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form.

<span class="mw-page-title-main">Hypercycle (geometry)</span> Curve in hyperbolic geometry

In hyperbolic geometry, a hypercycle, hypercircle or equidistant curve is a curve whose points have the same orthogonal distance from a given straight line.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

<span class="mw-page-title-main">Intersecting chords theorem</span> Geometry theorem relating the line segments created by intersecting chords in a circle

In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal. It is Proposition 35 of Book 3 of Euclid's Elements.

<span class="mw-page-title-main">Intersecting secants theorem</span> Geometry theorem relating line segments created by intersecting secants of a circle

In Euclidean geometry, the intersecting secants theorem or just secant theorem describes the relation of line segments created by two intersecting secants and the associated circle.

In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems, and play an important role in many geometrical constructions and proofs. Since the tangent line to a circle at a point P is perpendicular to the radius to that point, theorems involving tangent lines often involve radial lines and orthogonal circles.

In mathematics, the classical Möbius plane is the Euclidean plane supplemented by a single point at infinity. It is also called the inversive plane because it is closed under inversion with respect to any generalized circle, and thus a natural setting for planar inversive geometry.

In mathematics, a quadratic set is a set of points in a projective space that bears the same essential incidence properties as a quadric.

<span class="mw-page-title-main">Quadrisecant</span> Line through four points of a curve

In geometry, a quadrisecant or quadrisecant line of a space curve is a line that passes through four points of the curve. This is the largest possible number of intersections that a generic space curve can have with a line, and for such curves the quadrisecants form a discrete set of lines. Quadrisecants have been studied for curves of several types:

<span class="mw-page-title-main">Tangent–secant theorem</span> Geometry theorem relating line segments created by a secant and tangent line

In Euclidean geometry, the tangent-secant theorem describes the relation of line segments created by a secant and a tangent line with the associated circle. This result is found as Proposition 36 in Book 3 of Euclid's Elements.

References

  1. 1 2 Protter, Murray H.; Protter, Philip E. (1988), Calculus with Analytic Geometry, Jones & Bartlett Learning, p. 62, ISBN   9780867200935 .
  2. Redgrove, Herbert Stanley (1913), Experimental Mensuration: An Elementary Test-book of Inductive Geometry, Van Nostrand, p. 167.
  3. Gullberg, Jan (1997), Mathematics: From the Birth of Numbers, W. W. Norton & Company, p. 387, ISBN   9780393040029 .
  4. Venema, Gerard A. (2006), Foundations of Geometry, Pearson/Prentice-Hall, p. 229, ISBN   978-0-13-143700-5
  5. Jacobs, Harold R. (1974), Geometry, W. H. Freeman & Co., p. 482, ISBN   0-7167-0456-0
  6. Heath, Thomas L. (1956), The thirteen books of Euclid's Elements (Vol. 2), Dover, p. 73
  7. Hirschfeld, J. W. P. (1979), Projective Geometries over Finite Fields, Oxford University Press, p.  70, ISBN   0-19-853526-0