Ethylenediamine

Last updated
Ethylenediamine
Ethylene diamine fuming.jpg
Ethane-1,2-diamine 200.svg
Ball and stick model of ethylenediamine Ethylenediamine-3D-balls-2.png
Ball and stick model of ethylenediamine
Space-filling model of ethylenediamine Ethylenediamine-3D-spacefill.png
Space-filling model of ethylenediamine
Names
Preferred IUPAC name
Ethane-1,2-diamine [1]
Other names
Edamine, [2] 1,2-Diaminoethane, 'en' when a ligand
Identifiers
3D model (JSmol)
Abbreviationsen
605263
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.003.154 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 203-468-6
1098
KEGG
MeSH ethylenediamine
PubChem CID
RTECS number
  • KH8575000
UNII
UN number 1604
  • InChI=1S/C2H8N2/c3-1-2-4/h1-4H2 Yes check.svgY
    Key: PIICEJLVQHRZGT-UHFFFAOYSA-N Yes check.svgY
  • NCCN
Properties
C2H8N2
Molar mass 60.100 g·mol−1
AppearanceColorless liquid [3]
Odor Ammoniacal [3]
Density 0.90 g/cm3 [3]
Melting point 8 °C (46 °F; 281 K) [3]
Boiling point 116 °C (241 °F; 389 K) [3]
miscible
log P −2.057
Vapor pressure 1.3 kPa (at 20 °C)
5.8 mol Pa−1 kg−1
  • −46.26×10−6 cm3 mol−1
  • −76.2×10−6 cm3 mol−1 (HCl salt)
1.4565
Thermochemistry
172.59 J K−1 mol−1
Std molar
entropy
(S298)
202.42 J K−1 mol−1
−63.55 to −62.47 kJ mol−1
−1.8678 to −1.8668 MJ mol−1
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-skull.svg GHS-pictogram-acid.svg GHS-pictogram-silhouette.svg
Danger
H226, H302, H311, H314, H317, H332, H334, H412
P101, P102, P260, P273, P280, P305+P351+P338, P308+P313, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
3
2
0
Flash point 34 °C (93 °F; 307 K) [3]
385 °C (725 °F; 658 K) [3]
Explosive limits 2.7–16%
Lethal dose or concentration (LD, LC):
500 mg/kg (oral, rat)
470 mg/kg (oral, guinea pig)
1160 mg/kg (oral, rat) [4]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 10 ppm (25 mg/m3) [5]
REL (Recommended)
TWA 10 ppm (25 mg/m3) [5]
IDLH (Immediate danger)
1000 ppm [5]
Related compounds
Related alkanamines
1,2-Diaminopropane, 1,3-Diaminopropane
Related compounds
Ethylamine, Ethylenedinitramine
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Ethylenediamine (abbreviated as en when a ligand) is the organic compound with the formula C2H4(NH2)2. This colorless liquid with an ammonia-like odor is a basic amine. It is a widely used building block in chemical synthesis, with approximately 500,000 tonnes produced in 1998. [6] Ethylenediamine is the first member of the so-called polyethylene amines.

Contents

Synthesis

Ethylenediamine is produced industrially by treating 1,2-dichloroethane with ammonia under pressure at 180 °C in an aqueous medium: [6] [7]

Ethylendiamin Darstellung.svg

In this reaction hydrogen chloride is generated, which forms a salt with the amine. The amine is liberated by addition of sodium hydroxide and can then be recovered by rectification  [ de ]. Diethylenetriamine (DETA) and triethylenetetramine (TETA) are formed as by-products.

Another industrial route to ethylenediamine involves the reaction of ethanolamine and ammonia: [8]

EDA synthesis from MEOA.svg

This process involves passing the gaseous reactants over a bed of nickel heterogeneous catalysts.

It can be produced in the lab by the reaction of ethylene glycol and urea.[ citation needed ]

Ethylenediamine can be purified by treatment with sodium hydroxide to remove water followed by distillation. [9]

Applications

Ethylenediamine is used in large quantities for production of many industrial chemicals. It forms derivatives with carboxylic acids (including fatty acids), nitriles, alcohols (at elevated temperatures), alkylating agents, carbon disulfide, and aldehydes and ketones. Because of its bifunctional nature, having two amino groups, it readily forms heterocycles such as imidazolidines.

Precursor to chelation agents, drugs, and agrochemicals

A most prominent derivative of ethylenediamine is the chelating agent EDTA, which is derived from ethylenediamine via a Strecker synthesis involving cyanide and formaldehyde. Hydroxyethylethylenediamine is another commercially significant chelating agent. [6] Numerous bio-active compounds and drugs contain the N–CH2–CH2–N linkage, including some antihistamines. [10] Salts of ethylenebisdithiocarbamate are commercially significant fungicides under the brand names Maneb, Mancozeb, Zineb, and Metiram. Some imidazoline-containing fungicides are derived from ethylenediamine. [6]

Pharmaceutical ingredient

Ethylenediamine is an ingredient in the common bronchodilator drug aminophylline, where it serves to solubilize the active ingredient theophylline. Ethylenediamine has also been used in dermatologic preparations, but has been removed from some because of causing contact dermatitis. [11] When used as a pharmaceutical excipient, after oral administration its bioavailability is about 0.34, due to a substantial first-pass effect. Less than 20% is eliminated by renal excretion. [12]

Ethylenediamine-derived antihistamines are the oldest of the five classes of first-generation antihistamines, beginning with piperoxan aka benodain, discovered in 1933 at the Pasteur Institute in France, and also including mepyramine, tripelennamine, and antazoline. The other classes are derivatives of ethanolamine, alkylamine, piperazine, and others (primarily tricyclic and tetracyclic compounds related to phenothiazines, tricyclic antidepressants, as well as the cyproheptadine-phenindamine family)

Role in polymers

Ethylenediamine, because it contains two amine groups, is a widely used precursor to various polymers. Condensates derived from formaldehyde are plasticizers. It is widely used in the production of polyurethane fibers. The PAMAM class of dendrimers are derived from ethylenediamine. [6]

Tetraacetylethylenediamine

The bleaching activator tetraacetylethylenediamine is generated from ethylenediamine. The derivative N,N-ethylenebis(stearamide) (EBS) is a commercially significant mold-release agent and a surfactant in gasoline and motor oil.

Other applications

Coordination chemistry

Ethylenediamine is a well-known bidentate chelating ligand for coordination compounds, with the two nitrogen atoms donating their lone pairs of electrons when ethylenediamine acts as a ligand. It is often abbreviated "en" in inorganic chemistry. The complex [Co(en)3]3+ is an archetypical chiral tris-chelate complex. The salen ligands, some of which are used in catalysis, are derived from the condensation of salicylaldehydes and ethylenediamine.

Related derivatives of ethylenediamine include ethylenediaminetetraacetic acid (EDTA), tetramethylethylenediamine (TMEDA), and tetraethylethylenediamine (TEEDA). Chiral analogs of ethylenediamine include 1,2-diaminopropane and trans-diaminocyclohexane.

Safety

Ethylenediamine, like ammonia and other low-molecular weight amines, is a skin and respiratory irritant. Unless tightly contained, liquid ethylenediamine will release toxic and irritating vapors into its surroundings, especially on heating. The vapors absorb moisture from humid air to form a characteristic white mist, which is extremely irritating to skin, eyes, lungs and mucus membranes.

Related Research Articles

<span class="mw-page-title-main">Ligand</span> Ion or molecule that binds to a central metal atom to form a coordination complex

In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electron pairs, often through Lewis bases. The nature of metal–ligand bonding can range from covalent to ionic. Furthermore, the metal–ligand bond order can range from one to three. Ligands are viewed as Lewis bases, although rare cases are known to involve Lewis acidic "ligands".

Chelation is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate ligand and a single central metal atom. These ligands are called chelants, chelators, chelating agents, or sequestering agents. They are usually organic compounds, but this is not a necessity.

<span class="mw-page-title-main">Ethylenediaminetetraacetic acid</span> Chemical compound

Ethylenediaminetetraacetic acid (EDTA), also called EDTA acid after its own abbreviation, is an aminopolycarboxylic acid with the formula [CH2N(CH2CO2H)2]2. This white, water-insoluble solid is widely used to bind to iron (Fe2+/Fe3+) and calcium ions (Ca2+), forming water-soluble complexes even at neutral pH. It is thus used to dissolve Fe- and Ca-containing scale as well as to deliver iron ions under conditions where its oxides are insoluble. EDTA is available as several salts, notably disodium EDTA, sodium calcium edetate, and tetrasodium EDTA, but these all function similarly.

<span class="mw-page-title-main">Phthalic anhydride</span> Chemical compound

Phthalic anhydride is the organic compound with the formula C6H4(CO)2O. It is the anhydride of phthalic acid. Phthalic anhydride is a principal commercial form of phthalic acid. It was the first anhydride of a dicarboxylic acid to be used commercially. This white solid is an important industrial chemical, especially for the large-scale production of plasticizers for plastics. In 2000, the worldwide production volume was estimated to be about 3 million tonnes per year.

<span class="mw-page-title-main">Ethanolamine</span> Chemical compound

Ethanolamine is a naturally occurring organic chemical compound with the formula HOCH
2
CH
2
NH
2
or C
2
H
7
NO
. The molecule is bifunctional, containing both a primary amine and a primary alcohol. Ethanolamine is a colorless, viscous liquid with an odor reminiscent of ammonia.

<span class="mw-page-title-main">Methylamine</span> Organic chemical compound

Methylamine is an organic compound with a formula of CH3NH2. This colorless gas is a derivative of ammonia, but with one hydrogen atom being replaced by a methyl group. It is the simplest primary amine.

Morpholine is an organic chemical compound having the chemical formula O(CH2CH2)2NH. This heterocycle features both amine and ether functional groups. Because of the amine, morpholine is a base; its conjugate acid is called morpholinium. For example, treating morpholine with hydrochloric acid makes the salt morpholinium chloride. It is a colorless liquid with a weak, ammonia- or fish-like odor. The naming of morpholine is attributed to Ludwig Knorr, who incorrectly believed it to be part of the structure of morphine.

<span class="mw-page-title-main">Diethylenetriamine</span> Chemical compound

Diethylenetriamine (abbreviated Dien or DETA) and also known as 2,2’-Iminodi(ethylamine)) is an organic compound with the formula HN(CH2CH2NH2)2. This colourless hygroscopic liquid is soluble in water and polar organic solvents, but not simple hydrocarbons. Diethylenetriamine is structural analogue of diethylene glycol. Its chemical properties resemble those for ethylene diamine, and it has similar uses. It is a weak base and its aqueous solution is alkaline. DETA is a byproduct of the production of ethylenediamine from ethylene dichloride.

<span class="mw-page-title-main">Triethylenetetramine</span> Chemical compound

Triethylenetetramine (TETA and trien), also known as trientine (INN) when used medically, is an organic compound with the formula [CH2NHCH2CH2NH2]2. The pure freebase is a colorless oily liquid, but, like many amines, older samples assume a yellowish color due to impurities resulting from air-oxidation. It is soluble in polar solvents. The branched isomer tris(2-aminoethyl)amine and piperazine derivatives may also be present in commercial samples of TETA. The hydrochloride salts are used medically as a treatment for copper toxicity.

<span class="mw-page-title-main">Diethanolamine</span> Chemical compound

Diethanolamine, often abbreviated as DEA or DEOA, is an organic compound with the formula HN(CH2CH2OH)2. Pure diethanolamine is a white solid at room temperature, but its tendencies to absorb water and to supercool meaning that it is often encountered as a colorless, viscous liquid. Diethanolamine is polyfunctional, being a secondary amine and a diol. Like other organic amines, diethanolamine acts as a weak base. Reflecting the hydrophilic character of the secondary amine and hydroxyl groups, DEA is soluble in water. Amides prepared from DEA are often also hydrophilic. In 2013, the chemical was classified by the International Agency for Research on Cancer as "possibly carcinogenic to humans" (Group 2B).

<span class="mw-page-title-main">Triethanolamine</span> Chemical compound

Triethanolamine, or TEOA, is an organic compound with the chemical formula N(CH2CH2OH)3. It is a colourless, viscous liquid. It is both a tertiary amine and a triol. A triol is a molecule with three alcohol groups. Approximately 150,000 tonnes were produced in 1999. It is a colourless compound although samples may appear yellow because of impurities.

<span class="mw-page-title-main">Ethylamine</span> Chemical compound

Ethylamine, also known as ethanamine, is an organic compound with the formula CH3CH2NH2. This colourless gas has a strong ammonia-like odor. It condenses just below room temperature to a liquid miscible with virtually all solvents. It is a nucleophilic base, as is typical for amines. Ethylamine is widely used in chemical industry and organic synthesis.

<span class="mw-page-title-main">Nitrilotriacetic acid</span> Chemical compound

Nitrilotriacetic acid (NTA) is the aminopolycarboxylic acid with the formula N(CH2CO2H)3. It is a colourless solid. Its conjugate base nitrilotriacetate is used as a chelating agent for Ca2+, Co2+, Cu2+, and Fe3+.

<span class="mw-page-title-main">Isopropylamine</span> Chemical compound

Isopropylamine is an organic compound, an amine. It is a hygroscopic colorless liquid with ammonia-like odor. It is miscible with water and flammable. It is a valuable intermediate in chemical industry.

<span class="mw-page-title-main">Methyl acrylate</span> Chemical compound

Methyl acrylate is an organic compound, more accurately the methyl ester of acrylic acid. It is a colourless liquid with a characteristic acrid odor. It is mainly produced to make acrylate fiber, which is used to weave synthetic carpets. It is also a reagent in the synthesis of various pharmaceutical intermediates. Owing to the tendency of methyl acrylate to polymerize, samples typically contain an inhibitor such as hydroquinone.

<span class="mw-page-title-main">EDDHA</span> Chemical compound

EDDHA or ethylenediamine-N,N-bis(2-hydroxyphenylacetic acid) is a chelating agent. Like EDTA, it binds metal ions as a hexadentate ligand, using two amines, two phenolate centers, and two carboxylates as the six binding sites. The complexes are typically anionic. The ligand itself is a white, water-soluble powder. Both the free ligand and its tetraanionic chelating agent are abbreviated EDDHA. In contrast to EDDHA, most related aminopolycarboxylic acid chelating agents feature tertiary amines and few have phenolate groups.

<span class="mw-page-title-main">Ethenone</span> Organic compound with the formula H2C=C=O

In organic chemistry, ethenone is the formal name for ketene, an organic compound with formula C2H2O or H2C=C=O. It is the simplest member of the ketene class. It is an important reagent for acetylations.

<span class="mw-page-title-main">Denticity</span> Number of atoms in a ligand that bond to the central atom of a coordination complex

In coordination chemistry, denticity refers to the number of donor groups in a given ligand that bind to the central metal atom in a coordination complex. In many cases, only one atom in the ligand binds to the metal, so the denticity equals one, and the ligand is said to be monodentate. Ligands with more than one bonded atom are called polydentate or multidentate. The denticity of a ligand is described with the Greek letter κ ('kappa'). For example, κ6-EDTA describes an EDTA ligand that coordinates through 6 non-contiguous atoms.

Glycolonitrile, also called hydroxyacetonitrile or formaldehyde cyanohydrin, is the organic compound with the formula HOCH2CN. It is the simplest cyanohydrin and it is derived from formaldehyde. It is a colourless liquid that dissolves in water and ether. Because glycolonitrile decomposes readily into formaldehyde and hydrogen cyanide, it is listed as an extremely hazardous substance. In January 2019, astronomers reported the detection of glycolonitrile, another possible building block of life among other such molecules, in outer space.

<span class="mw-page-title-main">Ferric EDTA</span> Chemical compound

Ferric EDTA is the coordination complex formed from ferric ions and EDTA. EDTA has a high affinity for ferric ions. It gives yellowish aqueous solutions.

References

  1. International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 676. doi:10.1039/9781849733069. ISBN   978-0-85404-182-4.
  2. "32007R0129". European Union. 12 February 2007. Annex II. Retrieved 3 May 2012.
  3. 1 2 3 4 5 6 7 Record in the GESTIS Substance Database of the Institute for Occupational Safety and Health
  4. "Ethylenediamine". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  5. 1 2 3 NIOSH Pocket Guide to Chemical Hazards. "#0269". National Institute for Occupational Safety and Health (NIOSH).
  6. 1 2 3 4 5 Eller, Karsten; Henkes, Erhard; Rossbacher, Roland; Höke, Hartmut (2005). "Amines, Aliphatic". Amines, Aliphatic. Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH Verlag. doi:10.1002/14356007.a02_001. ISBN   3-527-30673-0.
  7. Arpe, Hans-Jürgen (2007). Industrielle Organische Chemie (6th ed.). Wiley VCH. p. 245.{{cite book}}: CS1 maint: location missing publisher (link)
  8. Hans-Jürgen Arpe, Industrielle Organische Chemie, 6. Auflage (2007), Seite 275, Wiley VCH
  9. Rollinson, Carl L.; Bailar, John C. Jr. (1946). "Tris(ethylenediamine)chromium(III) Salts". Inorganic Syntheses. Vol. 2. pp. 196–200. doi:10.1002/9780470132333.ch60. ISBN   978-0-470-13233-3.
  10. Kotti, S. R. S. S.; Timmons, C.; Li, G. (2006). "Vicinal diamino functionalities as privileged structural elements in biologically active compounds and exploitation of their synthetic chemistry". Chemical Biology & Drug Design. 67 (2): 101–114. doi:10.1111/j.1747-0285.2006.00347.x. PMID   16492158. S2CID   37177899.
  11. Hogan DJ (January 1990). "Allergic contact dermatitis to ethylenediamine. A continuing problem". Dermatol Clin . 8 (1): 133–6. doi:10.1016/S0733-8635(18)30536-9. PMID   2137392.
  12. Zuidema, J. (1985-08-23). "Ethylenediamine, profile of a sensitizing excipient". Pharmacy World & Science. 7 (4): 134–140. doi:10.1007/BF02097249. PMID   3900925. S2CID   11016366.

Commons-logo.svg Media related to Ethylenediamine at Wikimedia Commons