Ionotropic GABA receptor

Last updated

Ionotropic GABA receptors (iGABARs) are ligand-gated ion channel of the GABA receptors class which are activated by gamma-aminobutyric acid (GABA), and include:

Contents

The GABAB receptor, a G protein-coupled receptor, is the only metabotropic GABA receptor and its mechanism of action differs significantly from the ionotropic receptors. Functionally, in mature organisms, activation of these receptors typically results in neural inhibition, primarily via the influx of chloride ions, although exceptions to this general principle exist, such as during early development. Structurally, iGABARs are pentameric transmembrane ion channels, meaning they are made up of five subunits. Since there are several classes of subunits and a variety of genes encoding many members of these classes, a wide variety of structurally, and therefore functionally, distinct channels of iGABARs is observed.

Introduction

This is a neuromuscular junction. There is a presynaptic unit (axon), a synapse and a postsynaptic unit (dendrite). Neurotransmitters are released into the synapse. Neuromuscular junction.svg
This is a neuromuscular junction. There is a presynaptic unit (axon), a synapse and a postsynaptic unit (dendrite). Neurotransmitters are released into the synapse.

The neuromuscular junction in the CNS can be composed of a presynaptic unit located at an axon terminal with synaptic vesicles and a postsynaptic unit located at a dendrite. [1] Neurotransmitters are chemical molecules that are released from a presynaptic unit into the synapse and received by the postsynaptic unit, resulting in a biological and electrophysiological effect. The two main types of neurotransmitters are amino acid transmitters and GABA transmitters. [1] The release of and binding of glutamate, an amino acid transmitter, to its respective receptor manifests in an excitatory postsynaptic potential. [1] On the other hand, the release and binding of gamma-amino butyric acid (GABA) to the GABA receptor results in an inhibitory postsynaptic potential. [1] The ability of the GABA receptor function rests on its molecular structure of multiple binding sites and conductance levels. [1] These receptors are prevalent in interneurons relaying messages among various regions of the brain. [1]

The difference between ionotropic and metabotropic GABA receptors

Classification of Ligand-Gated Ion Channels: iGABARs fall under the Cys-Loop receptors. Classification of Ligand-Gated Ion Channels 2.jpg
Classification of Ligand-Gated Ion Channels: iGABARs fall under the Cys-Loop receptors.

The two types of GABA receptors are the GABAA and GABAB receptors. The pentameric GABAA receptors are ionotropic, meaning that upon binding with the ligand their biological and electrophysiological effect is carried out through the conductance of ions. [2] This is why the physiological makeup for GABAA receptors differs from GABAB in that they are ligand-gated ion channels. The chloride-ion gated channels facilitate the inhibitory effect through the influx of chloride ions. [2] However, GABAB receptors are metabotropic meaning they utilize a G-protein coupled mechanism. Since the G-protein is a heterodimeric [2] molecule, the separation and phosphorylation of its parts result in a signal cascade, resulting in a more steady but amplified response. 

Pharmacological implications

Earlier a third type of GABA receptor was discovered and named GABAC, but recently it has been categorized as a sub-type of the GABAA receptor. [3] Thus, the iontropic GABA receptors consist of the GABAA receptor and the GABAA-ρ receptor. There are pharmacological implications in understanding the molecular structure and function of these ionotropic receptors. Since they are targeted by neuroactive drugs, this characteristic is exploited in order to deduce their molecular structure and function in the CNS. [4] For example, GABAA receptors respond to neuroactive drugs like benzodiazepines. [5] Normally increasing a neuron's permeability to chloride ions results in inhibition; bensodiazepines further propagate this event ensuring inhibition, serving as an indirect [5] factor. Armed with the knowledge of chloride ion permeability leading to inhibition, it is important to note that ethanol and barbiturates [5] can directly increase the influx of chloride ions resulting in inhibition. Further characterization of the allosteric modulations [2] of the active sites in the ionotropic gives insight on new treatments and nervous system disorders, such as panic disorder. [6]

Related Research Articles

γ-Aminobutyric acid Main inhibitory neurotransmitter in the mammalian brain

γ-Aminobutyric acid, or GABA, is the chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system.

<span class="mw-page-title-main">Neurotransmitter receptor</span> Type of protein

A neurotransmitter receptor is a membrane receptor protein that is activated by a neurotransmitter. Chemicals on the outside of the cell, such as a neurotransmitter, can bump into the cell's membrane, in which there are receptors. If a neurotransmitter bumps into its corresponding receptor, they will bind and can trigger other events to occur inside the cell. Therefore, a membrane receptor is part of the molecular machinery that allows cells to communicate with one another. A neurotransmitter receptor is a class of receptors that specifically binds with neurotransmitters as opposed to other molecules.

A metabotropic receptor, also referred to by the broader term G-protein-coupled receptor, is a type of membrane receptor that initiates a number of metabolic steps to modulate cell activity. The nervous system utilizes two types of receptors: metabotropic and ionotropic receptors. While ionotropic receptors form an ion channel pore, metabotropic receptors are indirectly linked with ion channels through signal transduction mechanisms, such as G proteins.

An inhibitory postsynaptic potential (IPSP) is a kind of synaptic potential that makes a postsynaptic neuron less likely to generate an action potential. IPSP were first investigated in motorneurons by David P. C. Lloyd, John Eccles and Rodolfo Llinás in the 1950s and 1960s. The opposite of an inhibitory postsynaptic potential is an excitatory postsynaptic potential (EPSP), which is a synaptic potential that makes a postsynaptic neuron more likely to generate an action potential. IPSPs can take place at all chemical synapses, which use the secretion of neurotransmitters to create cell to cell signalling. Inhibitory presynaptic neurons release neurotransmitters that then bind to the postsynaptic receptors; this induces a change in the permeability of the postsynaptic neuronal membrane to particular ions. An electric current that changes the postsynaptic membrane potential to create a more negative postsynaptic potential is generated, i.e. the postsynaptic membrane potential becomes more negative than the resting membrane potential, and this is called hyperpolarisation. To generate an action potential, the postsynaptic membrane must depolarize—the membrane potential must reach a voltage threshold more positive than the resting membrane potential. Therefore, hyperpolarisation of the postsynaptic membrane makes it less likely for depolarisation to sufficiently occur to generate an action potential in the postsynaptic neurone.

<span class="mw-page-title-main">GABA receptor</span> Receptors that respond to gamma-aminobutyric acid

The GABA receptors are a class of receptors that respond to the neurotransmitter gamma-aminobutyric acid (GABA), the chief inhibitory compound in the mature vertebrate central nervous system. There are two classes of GABA receptors: GABAA and GABAB. GABAA receptors are ligand-gated ion channels ; whereas GABAB receptors are G protein-coupled receptors, also called metabotropic receptors.

<span class="mw-page-title-main">Bicuculline</span> Chemical compound

Bicuculline is a phthalide-isoquinoline compound that is a light-sensitive competitive antagonist of GABAA receptors. It was originally identified in 1932 in plant alkaloid extracts and has been isolated from Dicentra cucullaria, Adlumia fungosa, and several Corydalis species. Since it blocks the inhibitory action of GABA receptors, the action of bicuculline mimics epilepsy; it also causes convulsions. This property is utilized in laboratories around the world in the in vitro study of epilepsy, generally in hippocampal or cortical neurons in prepared brain slices from rodents. This compound is also routinely used to isolate glutamatergic receptor function.

<span class="mw-page-title-main">Ligand-gated ion channel</span> Type of ion channel transmembrane protein

Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl to pass through the membrane in response to the binding of a chemical messenger (i.e. a ligand), such as a neurotransmitter.

GABA<sub>A</sub> receptor Ionotropic receptor and ligand-gated ion channel

The GABAA receptor (GABAAR) is an ionotropic receptor and ligand-gated ion channel. Its endogenous ligand is γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system. Upon opening, the GABAA receptor on the postsynaptic cell is selectively permeable to chloride ions (Cl) and, to a lesser extent, bicarbonate ions (HCO3). Depending on the membrane potential and the ionic concentration difference, this can result in ionic fluxes across the pore. If the membrane potential is higher than the equilibrium potential (also known as the reversal potential) for chloride ions, when the receptor is activated Cl will flow into the cell. This causes an inhibitory effect on neurotransmission by diminishing the chance of a successful action potential occurring at the postsynaptic cell. The reversal potential of the GABAA-mediated inhibitory postsynaptic potential (IPSP) in normal solution is −70 mV, contrasting the GABAB IPSP (-100 mV).

<span class="mw-page-title-main">Glycine receptor</span> Widely distributed inhibitory receptor in the central nervous system

The glycine receptor is the receptor of the amino acid neurotransmitter glycine. GlyR is an ionotropic receptor that produces its effects through chloride current. It is one of the most widely distributed inhibitory receptors in the central nervous system and has important roles in a variety of physiological processes, especially in mediating inhibitory neurotransmission in the spinal cord and brainstem.

Molecular neuroscience is a branch of neuroscience that observes concepts in molecular biology applied to the nervous systems of animals. The scope of this subject covers topics such as molecular neuroanatomy, mechanisms of molecular signaling in the nervous system, the effects of genetics and epigenetics on neuronal development, and the molecular basis for neuroplasticity and neurodegenerative diseases. As with molecular biology, molecular neuroscience is a relatively new field that is considerably dynamic.

<span class="mw-page-title-main">Kainate receptor</span> Class of ionotropic glutamate receptors

Kainate receptors, or kainic acid receptors (KARs), are ionotropic receptors that respond to the neurotransmitter glutamate. They were first identified as a distinct receptor type through their selective activation by the agonist kainate, a drug first isolated from the algae Digenea simplex. They have been traditionally classified as a non-NMDA-type receptor, along with the AMPA receptor. KARs are less understood than AMPA and NMDA receptors, the other ionotropic glutamate receptors. Postsynaptic kainate receptors are involved in excitatory neurotransmission. Presynaptic kainate receptors have been implicated in inhibitory neurotransmission by modulating release of the inhibitory neurotransmitter GABA through a presynaptic mechanism.

GABAB receptors (GABABR) are G-protein coupled receptors for gamma-aminobutyric acid (GABA), therefore making them metabotropic receptors, that are linked via G-proteins to potassium channels. The changing potassium concentrations hyperpolarize the cell at the end of an action potential. The reversal potential of the GABAB-mediated IPSP is –100 mV, which is much more hyperpolarized than the GABAA IPSP. GABAB receptors are found in the central nervous system and the autonomic division of the peripheral nervous system.

The GABAA-rho receptor is a subclass of GABAA receptors composed entirely of rho (ρ) subunits. GABAA receptors including those of the ρ-subclass are ligand-gated ion channels responsible for mediating the effects of gamma-amino butyric acid (GABA), the major inhibitory neurotransmitter in the brain. The GABAA-ρ receptor, like other GABAA receptors, is expressed in many areas of the brain, but in contrast to other GABAA receptors, the GABAA-ρ receptor has especially high expression in the retina.

<span class="mw-page-title-main">Glutamate receptor</span> Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells

Glutamate receptors are synaptic and non synaptic receptors located primarily on the membranes of neuronal and glial cells. Glutamate is abundant in the human body, but particularly in the nervous system and especially prominent in the human brain where it is the body's most prominent neurotransmitter, the brain's main excitatory neurotransmitter, and also the precursor for GABA, the brain's main inhibitory neurotransmitter. Glutamate receptors are responsible for the glutamate-mediated postsynaptic excitation of neural cells, and are important for neural communication, memory formation, learning, and regulation.

<span class="mw-page-title-main">Succinic semialdehyde dehydrogenase deficiency</span> Rare disorder involving deficiency in GABA degradation

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare autosomal recessive disorder of the degradation pathway of the inhibitory neurotransmitter γ-aminobutyric acid, or GABA. The disorder has been identified in approximately 350 families, with a significant proportion being consanguineous families. The first case was identified in 1981 and published in a Dutch clinical chemistry journal that highlighted a number of neurological conditions such as delayed intellectual, motor, speech, and language as the most common manifestations. Later cases reported in the early 1990s began to show that hypotonia, hyporeflexia, seizures, and a nonprogressive ataxia were frequent clinical features as well.

<span class="mw-page-title-main">Calyx of Held</span>

The Calyx of Held is a particularly large synapse in the mammalian auditory central nervous system, so named after Hans Held who first described it in his 1893 article Die centrale Gehörleitung because of its resemblance to the calyx of a flower. Globular bushy cells in the anteroventral cochlear nucleus (AVCN) send axons to the contralateral medial nucleus of the trapezoid body (MNTB), where they synapse via these calyces on MNTB principal cells. These principal cells then project to the ipsilateral lateral superior olive (LSO), where they inhibit postsynaptic neurons and provide a basis for interaural level detection (ILD), required for high frequency sound localization. This synapse has been described as the largest in the brain.

<span class="mw-page-title-main">GABA receptor agonist</span>

A GABA receptor agonist is a drug that is an agonist for one or more of the GABA receptors, producing typically sedative effects, and may also cause other effects such as anxiolytic, anticonvulsant, and muscle relaxant effects. There are three receptors of the gamma-aminobutyric acid. The two receptors GABA-α and GABA-ρ are ion channels that are permeable to chloride ions which reduces neuronal excitability. The GABA-β receptor belongs to the class of G-Protein coupled receptors that inhibit adenylyl cyclase, therefore leading to decreased cyclic adenosine monophosphate (cAMP). GABA-α and GABA-ρ receptors produce sedative and hypnotic effects and have anti-convulsion properties. GABA-β receptors also produce sedative effects. Furthermore, they lead to changes in gene transcription.

Cellular neuroscience is a branch of neuroscience concerned with the study of neurons at a cellular level. This includes morphology and physiological properties of single neurons. Several techniques such as intracellular recording, patch-clamp, and voltage-clamp technique, pharmacology, confocal imaging, molecular biology, two photon laser scanning microscopy and Ca2+ imaging have been used to study activity at the cellular level. Cellular neuroscience examines the various types of neurons, the functions of different neurons, the influence of neurons upon each other, and how neurons work together.

<span class="mw-page-title-main">Quisqualamine</span> Chemical compound

Quisqualamine is the α-decarboxylated analogue of quisqualic acid, as well as a relative of the neurotransmitters glutamate and γ-aminobutyric acid (GABA). α-Decarboxylation of excitatory amino acids can produce derivatives with inhibitory effects. Indeed, unlike quisqualic acid, quisqualamine has central depressant and neuroprotective properties and appears to act predominantly as an agonist of the GABAA receptor and also to a lesser extent as an agonist of the glycine receptor, due to the facts that its actions are inhibited in vitro by GABAA antagonists like bicuculline and picrotoxin and by the glycine antagonist strychnine, respectively. Mg2+ and DL-AP5, NMDA receptor blockers, CNQX, an antagonist of both the AMPA and kainate receptors, and 2-hydroxysaclofen, a GABAB receptor antagonist, do not affect quisqualamine's actions in vitro, suggesting that it does not directly affect the ionotropic glutamate receptors or the GABAB receptor in any way. Whether it binds to and acts upon any of the metabotropic glutamate receptors like its analogue quisqualic acid however is unclear.

A channel modulator, or ion channel modulator, is a type of drug which modulates ion channels. They include channel blockers and channel openers.

References

  1. 1 2 3 4 5 6 Shepherd GM, Hanson PI (2014). "Synaptic transmission". AccessScience. McGraw-Hill Education. doi:10.1036/1097-8542.674100.
  2. 1 2 3 4 Enna SJ, Möhler H (2007). The GABA receptors. Humana Press. OCLC   474809970.
  3. Bormann J (January 2000). "The 'ABC' of GABA receptors". Trends in Pharmacological Sciences. 21 (1): 16–9. doi:10.1016/S0165-6147(99)01413-3. PMID   10637650.
  4. Palyulin VA, Radchenko EV, Osolodkin DE, Chupakhin VI, Zefirov NS (May 2010). "Ionotropic GABA receptors: modelling and design of selective ligands". Journal of Cheminformatics. 2 (S1): P49. doi: 10.1186/1758-2946-2-s1-p49 . PMC   2867184 .
  5. 1 2 3 Carlton PL (2014). "Tranquilizer". AccessScience. McGraw-Hill Education. doi:10.1036/1097-8542.704300.
  6. Stein DJ, Carey PD (2020). "Anxiety disorders". AccessScience. McGraw-Hill Education. doi:10.1036/1097-8542.042250.