June 2029 lunar eclipse

Last updated
Total lunar eclipse
June 26, 2029
Ecliptic north up
Lunar eclipse chart close-29jun26.png
The moon will pass through the center of the Earth's shadow.
Saros (and member) 130 (35 of 72)
Gamma +0.01240
Magnitude +1.84362
Duration (hr:mn:sc)
Totality1:41:53
Partial3:39:32
Penumbral5:35:08
Contacts (UTC)
P10:34:34
U11:32:18
U22:31:18
Greatest3:22:05
U34:13:01
U45:11:50
P46:09:42

A total lunar eclipse will take place between Monday and Tuesday, June 25-26, 2029. A central total eclipse lasting 1 hour and 41 minutes 53 seconds will plunge the full Moon into deep darkness, as it passes right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may be stained a deep orange or red color at maximum eclipse. It will be able to be seen from most of the Americas, Western Europe and Africa. The partial eclipse will last for 3 hours and 39 minutes 32 seconds in total.

Contents

The moon will pass through the center of the Earth's shadow. Totality will last 101 minutes 53 seconds, the maximum duration for Saros series 130.

With an umbral eclipse magnitude of 1.84362, this is the largest lunar eclipse of the 21st century. Gamma has a value of only 0.01240. Due to the Moon's relatively large size as seen from Earth and greater speed in its elliptical orbit, totality will not last over 106 minutes. This is the darkest and greatest total lunar eclipse in the 21st century.

Visibility

It will be completely visible over South America, seen rising over North America, and setting over Africa and Europe.

Lunar eclipse from moon-2029Jun26.png

Lunar year series

Lunar eclipse series sets from 2027–2031
Descending node Ascending node
Saros Date
Viewing
Type
Chart
SarosDate
Viewing
Type
Chart
110 2027 Jul 18
Lunar eclipse from moon-2027Jul18.png
Penumbral
Lunar eclipse chart close-2027Jul18.png
115 2028 Jan 12
Lunar eclipse from moon-2028Jan12.png
Partial
Lunar eclipse chart close-2028Jan12.png
120 2028 Jul 06
Lunar eclipse from moon-2028Jul06.png
Partial
Lunar eclipse chart close-2028Jul06.png
125 2028 Dec 31
Lunar eclipse from moon-2028Dec31.png
Total
Lunar eclipse chart close-2028Dec31.png
130 2029 Jun 26
Lunar eclipse from moon-2029Jun26.png
Total
Lunar eclipse chart close-29jun26.png
135 2029 Dec 20
Lunar eclipse from moon-2029Dec20.png
Total
Lunar eclipse chart close-2029Dec20.png
140 2030 Jun 15
Lunar eclipse from moon-2030Jun15.png
Partial
Lunar eclipse chart close-2030Jun15.png
145 2030 Dec 09
Lunar eclipse from moon-2030Dec09.png
Penumbral
Lunar eclipse chart close-2030Dec09.png
150 2031 Jun 05
Lunar eclipse from moon-2031Jun05.png
Penumbral
Lunar eclipse chart close-2031Jun05.png
Last set 2027 Aug 17 Last set 2027 Feb 20
Next set 2031 May 07 Next set 2031 Oct 30

Metonic series

The Metonic cycle repeats nearly exactly every 19 years and represents a Saros cycle plus one lunar year. Because it occurs on the same calendar date, the Earth's shadow will be in nearly the same location relative to the background stars.

Ascending nodeDescending node
  1. 1991 Jun 27 - penumbral (110)
  2. 2010 Jun 26 - partial (120)
  3. 2029 Jun 26 - total (130)
  4. 2048 Jun 26 - partial (140)
  5. 2067 Jun 27 - penumbral (150)
  1. 1991 Dec 21 - partial (115)
  2. 2010 Dec 21 - total (125)
  3. 2029 Dec 20 - total (135)
  4. 2048 Dec 20 - partial (145)
Metonic lunar eclipse 1991-2067A.png Metonic lunar eclipse 1991-2048D.png

Saros series

Lunar saros series 130, repeating every 18 years and 11 days, has a total of 71 lunar eclipse events including 56 umbral lunar eclipses (42 partial lunar eclipses and 14 total lunar eclipses). Solar Saros 137 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

GreatestFirst
Lunar eclipse chart close-29jun26.png
The greatest eclipse of the series will occur on 2029 Jun 26, lasting 102 minutes. [1]
PenumbralPartialTotalCentral
1416 Jun 101560 Sep 4 1921 Apr 22
Lunar eclipse chart close-1921Apr22.png
1957 May 13
Lunar eclipse chart close-1957May13.png
Last
CentralTotalPartialPenumbral
2083 Jul 29
Lunar eclipse chart close-2083Jul29.png
2155 Sep 112552 May 102678 Jul 26
1901–2200
1903 Apr 12 1921 Apr 22 1939 May 3
Lunar eclipse chart close-1903Apr12.png Lunar eclipse from moon-1903Apr12.png Lunar eclipse chart close-1921Apr22.png Lunar eclipse from moon-1921Apr22.png Lunar eclipse chart close-1939May03.png Lunar eclipse from moon-1939May03.png
1957 May 13 1975 May 25 1993 Jun 4
Lunar eclipse chart close-1957May13.png Lunar eclipse from moon-1957May13.png Lunar eclipse chart close-1975May25.png Lunar eclipse from moon-1975May25.png Lunar eclipse chart close-1993Jun04.png Lunar eclipse from moon-1993Jun04.png
2011 Jun 15 2029 Jun 26 2047 Jul 7
Lunar eclipse chart close-2011jun15.png Lunar eclipse from moon-2011Jun15.png Lunar eclipse chart close-29jun26.png Lunar eclipse from moon-2029Jun26.png Lunar eclipse chart close-2047Jul07.png Lunar eclipse from moon-2047Jul07.png
2065 Jul 17 2083 Jul 29
Lunar eclipse chart close-2065Jul17.png Lunar eclipse from moon-2065Jul17.png Lunar eclipse chart close-2083Jul29.png Lunar eclipse from moon-2083Jul29.png

Inex series

The inex series repeats eclipses 20 days short of 29 years, repeating on average every 10571.95 days. This period is equal to 358 lunations (synodic months) and 388.5 draconic months. Saros series increment by one on successive Inex events and repeat at alternate ascending and descending lunar nodes.

This period is 383.6734 anomalistic months (the period of the Moon's elliptical orbital precession). Despite the average 0.05 time-of-day shift between subsequent events, the variation of the Moon in its elliptical orbit at each event causes the actual eclipse time to vary significantly. It is a part of Lunar Inex series 40.

All events in this series shown (from 1000 to 2500) are central total lunar eclipses.

Inex series from 1000–2500 AD
Descending nodeAscending nodeDescending nodeAscending node
Saros DateSarosDateSarosDateSarosDate
951016 May 24961045 May 3971074 Apr 14981103 Mar 25
991132 Mar 31001161 Feb 121011190 Jan 231021219 Jan 2
1031247 Dec 131041276 Nov 231051305 Nov 21061334 Oct 13
1071363 Sep 231081392 Sep 21091421 Aug 131101450 Jul 24
1111479 Jul 4112 1508 Jun 13
Lunar eclipse chart close-1509Jun13.png
1131537 May 241141566 May 4
1151595 Apr 241161624 Apr 31171653 Mar 141181682 Feb 21
1191711 Feb 31201740 Jan 131211768 Dec 231221797 Dec 4
1231826 Nov 141241855 Oct 251251884 Oct 4126 1913 Sep 15
Lunar eclipse chart close-1913Sep15.png
127 1942 Aug 26
Lunar eclipse chart close-1942Aug26.png
128 1971 Aug 6
Lunar eclipse chart close-1971Aug06.png
129 2000 Jul 16
Lunar eclipse chart close-2000jul16.png
130 2029 Jun 26
Lunar eclipse chart close-29jun26.png
131 2058 Jun 6
Lunar eclipse chart close-2058Jun06.png
132 2087 May 17
Lunar eclipse chart close-2087May17.png
1332116 Apr 271342145 Apr 7
1352174 Mar 181362203 Feb 261372232 Feb 71382261 Jan 17
1392289 Dec 271402318 Dec 91412347 Nov 191422376 Oct 28
1432405 Oct 81442434 Sep 181452463 Aug 29146 2492 Aug 8
Lunar eclipse chart close-2492Aug08.png

Tritos

Tzolkinex

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros). [2] This lunar eclipse is related to two annular solar eclipses of Solar Saros 137.

June 21, 2020 July 2, 2038
SE2020Jun21A.png SE2038Jul02A.png

See also

Notes

  1. Listing of Eclipses of cycle 130
  2. Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros


Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 29, 2006</span> Total eclipse

A total solar eclipse occurred on March 29, 2006. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor which traversed half the Earth. The magnitude, that is, the ratio between the apparent sizes of the Moon and that of the Sun, was 1.052, and it was part of Saros 139.

<span class="mw-page-title-main">June 2011 lunar eclipse</span> Central lunar eclipse

A total lunar eclipse took place on 15 June 2011. It was the first of two such eclipses in 2011. The second occurred on 10 December 2011. While the visual effect of a total eclipse is variable, the Moon may have been stained a deep orange or red colour at maximum eclipse.

<span class="mw-page-title-main">March 2026 lunar eclipse</span> Total lunar eclipse of 2 March 2026

A total lunar eclipse will take place on Tuesday, March 3, 2026, the first of two lunar eclipses in 2026.

<span class="mw-page-title-main">July 2000 lunar eclipse</span> Central lunar eclipse

A total lunar eclipse took place on Sunday 16 July 2000, the second of two total lunar eclipses in 2000.

<span class="mw-page-title-main">March 1997 lunar eclipse</span> Partial lunar eclipse March 30, 1997

A partial lunar eclipse took place on Monday, March 24, 1997, the first of two lunar eclipses in 1997.

<span class="mw-page-title-main">May 2040 lunar eclipse</span> 2040 astronomical phenomenon

A total lunar eclipse will take place on May 26, 2040. The northern limb of the Moon will pass through the center of the Earth's shadow. This is the second central lunar eclipse of Saros series 131. This lunar event will occur near perigee, as a result, it will be referred to as a "super flower blood moon" or "super blood moon", though not quite as close to Earth as the eclipse of May 26, 2021.

A total lunar eclipse took place on Tuesday, July 6, 1982, the second of three total lunar eclipses in 1982, and the only one that was in the descending node. A dramatic total eclipse lasting 1 hour and 46 minutes plunged the full Moon into deep darkness, as it passed right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may have been stained a deep orange or red colour at maximum eclipse. This was a great spectacle for everyone who saw it. The partial eclipse lasted for 3 hours and 56 minutes in total.

<span class="mw-page-title-main">July 2047 lunar eclipse</span> Central lunar eclipse

A total lunar eclipse will take place on July 7, 2047. It will last 1 hour 40 minutes and 49 seconds and will plunge the full Moon into deep darkness, as it passes right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may be stained a deep orange or red colour at maximum eclipse. This will be a great spectacle for everyone who sees it. The partial eclipse will last for 3 hours and 39 minutes in total.

A total lunar eclipse took place on Friday, August 6, 1971, the second of two total lunar eclipses in 1971. A dramatic total eclipse lasting 1 hour, 39 minutes and 24.8 seconds plunged the full Moon into deep darkness, as it passed right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may have been stained a deep orange or red colour at maximum eclipse. This was a great spectacle for everyone who saw it. The partial eclipse lasted for 3 hours, 35 minutes and 31.9 seconds in total. Occurring only 2.2 days before perigee, the Moon's apparent diameter was 3.6% larger than average and the moon passed through the center of the Earth's shadow.

<span class="mw-page-title-main">May 1939 lunar eclipse</span> Total lunar eclipse May 3, 1939

A total lunar eclipse took place on Wednesday, May 3, 1939. A shallow total eclipse saw the Moon in relative darkness for 1 hour and 2 minutes. The Moon was 18% of its diameter into the Earth's umbral shadow, and should have been significantly darkened. The partial eclipse lasted for 3 hours and 27 minutes in total.

<span class="mw-page-title-main">April 1968 lunar eclipse</span> Total lunar eclipse April 13, 1968

A total lunar eclipse took place on Saturday, April 13, 1968, the first of two total eclipses in 1968, the second being on October 6, 1968.

<span class="mw-page-title-main">June 2058 lunar eclipse</span> Astronomical event

A total lunar eclipse will take place on June 6, 2058. The Moon will pass through the center of the Earth's shadow.

<span class="mw-page-title-main">June 2076 lunar eclipse</span> Central lunar eclipse

A total lunar eclipse will take place on June 17, 2076. The moon will pass through the center of the Earth's shadow. While the visual effect of a total eclipse is variable, the Moon may be stained a deep orange or red color at maximum eclipse. With a gamma value of only −0.0452 and an umbral eclipse magnitude of 1.7943, this is the second greatest eclipse in Saros series 131 as well as the largest and darkest lunar eclipse between June 26, 2029 and June 28, 2094. Overall, it will be the third largest and darkest lunar eclipse of the 21st century. While it will have similar values to the lunar eclipse of July 16, 2000, totality will not last over 106 minutes due to the moon's relatively large apparent size as seen from Earth and greater speed in its elliptical orbit. Totality's expected to last 100 minutes 34 seconds from 9:11:39 to 10:52:15 with the greatest point at 10:01:57 UTC.

<span class="mw-page-title-main">July 1953 lunar eclipse</span> Total lunar eclipse July 26, 1953

A total lunar eclipse took place on Sunday, July 26, 1953.

<span class="mw-page-title-main">August 1942 lunar eclipse</span> Total lunar eclipse August 26, 1942

A total lunar eclipse took place on Wednesday, August 26, 1942. The moon passed through the center of the Earth's shadow.

<span class="mw-page-title-main">May 2087 lunar eclipse</span> Astronomical event

A total lunar eclipse will take place on May 17, 2087. The moon will pass through the center of the Earth's shadow.

A total lunar eclipse took place at the Moon's descending node of the orbit on Tuesday, May 24, 1910 with an umbral eclipse magnitude of 1.09503. A total lunar eclipse takes place when the Earth comes between the Sun and the Moon and its shadow covers the Moon. Eclipse watchers can see the Moon turn red when the eclipse reaches totality. Total eclipses of the Moon happen at Full Moon when the Sun, Earth, and Moon are aligned to form a line. The astronomical term for this type of alignment is syzygy, which comes from the Greek word for being paired together. The Moon does not have its own light but shines because its surface reflects the Sun's rays. During a total lunar eclipse, the Earth comes between the Sun and the Moon and blocks any direct sunlight from reaching the Moon. The Sun casts the Earth's shadow on the Moon's surface. A shallow total eclipse saw the Moon in relative darkness for 49 minutes and 29.5 seconds. The Moon was 9.503% of its diameter into the Earth's umbral shadow, and should have been significantly darkened. The partial eclipse lasted for 3 hours, 35 minutes and 22.9 seconds in total.

<span class="mw-page-title-main">May 2069 lunar eclipse</span> Central lunar eclipse

A total lunar eclipse will take place on May 6, 2069. The eclipse will be a dark one with the southern tip of the Moon passing through the center of the Earth's shadow. This is the first central eclipse of Saros series 132.

<span class="mw-page-title-main">Solar eclipse of July 20, 1963</span> Total eclipse

A total solar eclipse occurred on July 20, 1963. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is at least the same size as the Sun's or larger, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with a partial solar eclipse visible over the surrounding region thousands of kilometres wide. Totality was visible from Hokkaido in Japan and Kuril Islands in Soviet Union on July 21, and Alaska, and Maine in the United States and also Canada on July 20. Astronomer Charles H. Smiley observed the eclipse from a U.S. Air Force F-104D Starfighter supersonic aircraft that was "racing the Moon's shadow" at 1,300 mph (2,100 km/h) extending the duration of totality to 4 minutes 3 seconds. The Moon was 375,819 km from the Earth.

<span class="mw-page-title-main">June 2123 lunar eclipse</span> Spectacular long central lunar eclipse

A total lunar eclipse will occur on Wednesday, June 9, 2123, with maximum eclipse at 05:06 UTC. A dramatic total eclipse lasting 106 minutes and 6 seconds will plunge the full Moon into deep darkness, as it passes right through the centre of the Earth's umbral shadow. While the visual effect of a total eclipse is variable, the Moon may be stained a deep orange or red colour at maximum eclipse. This will be a great spectacle for everyone who sees it. The partial eclipse will last for 3 hours and 56 minutes in total. The penumbral eclipse lasts for 6 hours and 14 minutes. Maximum eclipse is at 05:06:28 UT. This will be the longest Total Lunar Eclipse since 16 July 2000, and the longest one until 12 May 2264 and 27 July 3107, though the eclipse on June 19, 2141 will be nearly identical in all aspects. This will also be the longest of the 22nd century and the second longest of the 3rd millennium. The eclipse on June 19, 2141 will be the second longest of the 22nd century and the third longest of the third millennium.