Lung compliance

Last updated

Lung compliance, or pulmonary compliance, is a measure of the lung's ability to stretch and expand (distensibility of elastic tissue). In clinical practice it is separated into two different measurements, static compliance and dynamic compliance. Static lung compliance is the change in volume for any given applied pressure. [1] Dynamic lung compliance is the compliance of the lung at any given time during actual movement of air.

Contents

Low compliance indicates a stiff lung (one with high elastic recoil) and can be thought of as a thick balloon – this is the case often seen in fibrosis. High compliance indicates a pliable lung (one with low elastic recoil) and can be thought of as a grocery bag – this is the case often seen in emphysema. Compliance is highest at moderate lung volumes, and much lower at volumes which are very low or very high. The compliance of the lungs demonstrate lung hysteresis; that is, the compliance is different on inspiration and expiration for identical volume.

Calculation

Pulmonary compliance is calculated using the following equation, where ΔV is the change in volume, and ΔP is the change in pleural pressure:

For example, if a patient inhales 500 mL of air from a spirometer with an intrapleural pressure before inspiration of −5 cm H2O and −10 cm H2O at the end of inspiration. Then:

Static compliance (Cstat)

Static compliance represents pulmonary compliance during periods without gas flow, such as during an inspiratory pause. It can be calculated with the formula:

where

VT = tidal volume;
Pplat = plateau pressure;
PEEP = positive end-expiratory pressure.

Pplat is measured at the end of inhalation and prior to exhalation by using an inspiratory hold maneuver. During this maneuver, airflow is transiently (~0.5 sec) discontinued, which eliminates the effects of airway resistance. Pplat is never bigger than PIP and is typically <10 cm H2O lower than PIP when airway resistance is not elevated.

Dynamic compliance (Cdyn)

Dynamic compliance represents pulmonary compliance during periods of gas flow, such as during active inspiration. Dynamic compliance is always lesser than or equal to static lung compliance because PIP − PEEP is always greater than Pplat − PEEP. It can be calculated using the following equation,

where

Cdyn = Dynamic compliance;
VT = tidal volume;
PIP = Peak inspiratory pressure (the maximum pressure during inspiration);
PEEP = Positive End Expiratory Pressure:

Alterations in airway resistance, lung compliance and chest wall compliance influence Cdyn.

Dimensionality and Physical Analogues

The dimensions of compliance in respiratory physiology are inconsistent with the dimensions of compliance in physics-based applications. In physiology,

whereas in newtonian physics, compliance is defined as the inverse of the elastic stiffness constant k,

Pulmonary compliance is analogous to capacitance.

Clinical significance

Lung compliance is an important measurement in respiratory physiology. [2] [3]

Pulmonary surfactant increases compliance by decreasing the surface tension of water. The internal surface of the alveolus is covered with a thin coat of fluid. The water in this fluid has a high surface tension, and provides a force that could collapse the alveolus. The presence of surfactant in this fluid breaks up the surface tension of water, making it less likely that the alveolus can collapse inward. If the alveolus were to collapse, a great force would be required to open it, meaning that compliance would decrease drastically. Lung volume at any given pressure during inhalation is less than the lung volume at any given pressure during exhalation, which is called hysteresis. [4]

Functional significance of abnormally high or low compliance

Low compliance indicates a stiff lung and means extra work is required to bring in a normal volume of air. This occurs as the lungs in this case become fibrotic, lose their distensibility and become stiffer.

In a highly compliant lung, as in emphysema, the elastic tissue is damaged by enzymes. These enzymes are secreted by leukocytes (white blood cells) in response to a variety of inhaled irritants, such as cigarette smoke. Patients with emphysema have a very high lung compliance due to the poor elastic recoil. They have extreme difficulty exhaling air. In this condition extra work is required to get air out of the lungs. In addition, patients often have difficulties inhaling air as well. This is due to the fact that a highly compliant lung results in many Atelectasis which makes inflation difficult.[ further explanation needed ] Compliance also increases with increasing age.

Both peak inspiratory and plateau pressure increase when elastic resistance increases or when pulmonary compliance decreases (e.g. during abdominal insufflation, ascites, intrinsic lung disease, obesity, pulmonary edema, tension pneumothorax). On the other hand, only peak inspiratory pressure increases (plateau pressure unchanged) when airway resistance increases (e.g. airway compression, bronchospasm, mucous plug, kinked tube, secretions, foreign body). [5]

Compliance decreases in the following cases:

Related Research Articles

Diffusing capacity of the lung (DL) measures the transfer of gas from air in the lung, to the red blood cells in lung blood vessels. It is part of a comprehensive series of pulmonary function tests to determine the overall ability of the lung to transport gas into and out of the blood. DL, especially DLCO, is reduced in certain diseases of the lung and heart. DLCO measurement has been standardized according to a position paper by a task force of the European Respiratory and American Thoracic Societies.

Dead space is the volume of air that is inhaled that does not take part in the gas exchange, because it either remains in the conducting airways or reaches alveoli that are not perfused or poorly perfused. It means that not all the air in each breath is available for the exchange of oxygen and carbon dioxide. Mammals breathe in and out of their lungs, wasting that part of the inhalation which remains in the conducting airways where no gas exchange can occur.

<span class="mw-page-title-main">Inhalation</span> Flow of the respiratory current into an organism

Inhalation is the process of drawing air or other gases into the respiratory tract, primarily for the purpose of breathing and oxygen exchange within the body. It is a fundamental physiological function in humans and many other organisms, essential for sustaining life. Inhalation is the first phase of respiration, allowing the exchange of oxygen and carbon dioxide between the body and the environment, vital for the body's metabolic processes. This article delves into the mechanics of inhalation, its significance in various contexts, and its potential impact on health.

The control of ventilation is the physiological mechanisms involved in the control of breathing, which is the movement of air into and out of the lungs. Ventilation facilitates respiration. Respiration refers to the utilization of oxygen and balancing of carbon dioxide by the body as a whole, or by individual cells in cellular respiration.

<span class="mw-page-title-main">Spirometry</span> Pulmonary function test

Spirometry is the most common of the pulmonary function tests (PFTs). It measures lung function, specifically the amount (volume) and/or speed (flow) of air that can be inhaled and exhaled. Spirometry is helpful in assessing breathing patterns that identify conditions such as asthma, pulmonary fibrosis, cystic fibrosis, and COPD. It is also helpful as part of a system of health surveillance, in which breathing patterns are measured over time.

Vascular resistance is the resistance that must be overcome to push blood through the circulatory system and create blood flow. The resistance offered by the systemic circulation is known as the systemic vascular resistance (SVR) or may sometimes be called by the older term total peripheral resistance (TPR), while the resistance offered by the pulmonary circulation is known as the pulmonary vascular resistance (PVR). Systemic vascular resistance is used in calculations of blood pressure, blood flow, and cardiac function. Vasoconstriction increases SVR, whereas vasodilation decreases SVR.

<span class="mw-page-title-main">Plethysmograph</span> Medical instrument for measuring changes in volume

A plethysmograph is an instrument for measuring changes in volume within an organ or whole body. The word is derived from the Greek "plethysmos", and "graphein".

Compliance is the ability of a hollow organ (vessel) to distend and increase volume with increasing transmural pressure or the tendency of a hollow organ to resist recoil toward its original dimensions on application of a distending or compressing force. It is the reciprocal of "elastance", hence elastance is a measure of the tendency of a hollow organ to recoil toward its original dimensions upon removal of a distending or compressing force.

Positive end-expiratory pressure (PEEP) is the pressure in the lungs above atmospheric pressure that exists at the end of expiration. The two types of PEEP are extrinsic PEEP and intrinsic PEEP. Pressure that is applied or increased during an inspiration is termed pressure support.PEEP is a therapeutic parameter set in the ventilator, or a complication of mechanical ventilation with air trapping (auto-PEEP).

Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner. Elasticity theory primarily develops formalisms for the mechanics of solid bodies and materials. The elastic potential energy equation is used in calculations of positions of mechanical equilibrium. The energy is potential as it will be converted into other forms of energy, such as kinetic energy and sound energy, when the object is allowed to return to its original shape (reformation) by its elasticity.

High-frequency ventilation is a type of mechanical ventilation which utilizes a respiratory rate greater than four times the normal value and very small tidal volumes. High frequency ventilation is thought to reduce ventilator-associated lung injury (VALI), especially in the context of ARDS and acute lung injury. This is commonly referred to as lung protective ventilation. There are different types of high-frequency ventilation. Each type has its own unique advantages and disadvantages. The types of HFV are characterized by the delivery system and the type of exhalation phase.

In respiratory physiology, airway resistance is the resistance of the respiratory tract to airflow during inhalation and exhalation. Airway resistance can be measured using plethysmography.

The alveolar gas equation is the method for calculating partial pressure of alveolar oxygen (PAO2). The equation is used in assessing if the lungs are properly transferring oxygen into the blood. The alveolar air equation is not widely used in clinical medicine, probably because of the complicated appearance of its classic forms. The partial pressure of oxygen (pO2) in the pulmonary alveoli is required to calculate both the alveolar-arterial gradient of oxygen and the amount of right-to-left cardiac shunt, which are both clinically useful quantities. However, it is not practical to take a sample of gas from the alveoli in order to directly measure the partial pressure of oxygen. The alveolar gas equation allows the calculation of the alveolar partial pressure of oxygen from data that is practically measurable. It was first characterized in 1946.

Transpulmonary pressure is the difference between the alveolar pressure and the intrapleural pressure in the pleural cavity. During human ventilation, air flows because of pressure gradients.

<span class="mw-page-title-main">Pulmonary function testing</span> Test to evaluate respiratory system

Pulmonary function testing (PFT) is a complete evaluation of the respiratory system including patient history, physical examinations, and tests of pulmonary function. The primary purpose of pulmonary function testing is to identify the severity of pulmonary impairment. Pulmonary function testing has diagnostic and therapeutic roles and helps clinicians answer some general questions about patients with lung disease. PFTs are normally performed by a pulmonary function technician, respiratory therapist, respiratory physiologist, physiotherapist, pulmonologist, or general practitioner.

Modes of mechanical ventilation are one of the most important aspects of the usage of mechanical ventilation. The mode refers to the method of inspiratory support. In general, mode selection is based on clinician familiarity and institutional preferences, since there is a paucity of evidence indicating that the mode affects clinical outcome. The most frequently used forms of volume-limited mechanical ventilation are intermittent mandatory ventilation (IMV) and continuous mandatory ventilation (CMV). There have been substantial changes in the nomenclature of mechanical ventilation over the years, but more recently it has become standardized by many respirology and pulmonology groups. Writing a mode is most proper in all capital letters with a dash between the control variable and the strategy.

ΔP is a mathematical term symbolizing a change (Δ) in pressure (P).

Peak inspiratory pressure (PIP) is the highest level of pressure applied to the lungs during inhalation. In mechanical ventilation the number reflects a positive pressure in centimeters of water pressure (cm H2O). In normal breathing, it may sometimes be referred to as the maximal inspiratory pressure (MIPO), which is a negative value.

Mean airway pressure typically refers to the mean pressure applied during positive-pressure mechanical ventilation. Mean airway pressure correlates with alveolar ventilation, arterial oxygenation, hemodynamic performance, and barotrauma. It can also match the alveolar pressure if there is no difference between inspiratory and expiratory resistance.

A respiratory pressure meter measures the maximum inspiratory and expiratory pressures that a patient can generate at either the mouth (MIP and MEP) or inspiratory pressure a patient can generate through their nose via a sniff maneuver (SNIP). These measurements require patient cooperation and are known as volitional tests of respiratory muscle strength. Handheld devices displaying the measurement achieved in centimetres of water pressure (cmH2O) and the pressure trace created, allow quick patient testing away from the traditional pulmonary laboratory and are useful for ward-based, out-patient and preoperative assessment, as well as for use by pulmonologists and physiotherapists.

References

  1. Lung+compliance at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  2. Nikischin W, Gerhardt T, Everett R, Bancalari E (1998). "A new method to analyze lung compliance when pressure-volume relationship is nonlinear". Am J Respir Crit Care Med. 158 (4): 1052–60. doi:10.1164/ajrccm.158.4.9801011. PMID   9769260. article
  3. Nosek, Thomas M. "Section 4/4ch2/s4ch2_21". Essentials of Human Physiology. Archived from the original on 2016-03-24.
  4. West, John B. (2005). Respiratory physiology: the essentials. Hagerstown, MD: Lippincott Williams & Wilkins. ISBN   978-0-7817-5152-0.
  5. Marino, Paul. The ICU Book. 3rd Edition. Pages 465–467.
  6. West, John B. (2012). Respiratory physiology: the essentials (9th ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. p. 99. ISBN   978-1-60913-640-6. OCLC   723034847.