Overgrazing

Last updated
Overgrazed area in western New South Wales (Australia), by loss of native flora, in the upper right corner Overgrazing.JPG
Overgrazed area in western New South Wales (Australia), by loss of native flora, in the upper right corner
Satellite image of the border between Israel and Egypt. The Egyptian side, to the left, is overgrazed. Israel Egypt Border.JPG
Satellite image of the border between Israel and Egypt. The Egyptian side, to the left, is overgrazed.
Penned goats in an overgrazed landscape (Norte Chico, Chile) Cabrasnortechico.JPG
Penned goats in an overgrazed landscape (Norte Chico, Chile)
Huge herd of migratory wildebeest in Masai Mara during their annual migration shows landscape not overgrazed Wildebeest-during-Great-Migration.JPG
Huge herd of migratory wildebeest in Masai Mara during their annual migration shows landscape not overgrazed

Overgrazing occurs when plants are exposed to intensive grazing for extended periods of time, or without sufficient recovery periods. [1] It can be caused by either livestock in poorly managed agricultural applications, game reserves, or nature reserves. It can also be caused by immobile, travel restricted populations of native or non-native wild animals.

Contents

Overgrazing reduces the usefulness, productivity and biodiversity of the land and is one cause of desertification and erosion. Overgrazing is also seen as a cause of the spread of invasive species of non-native plants and of weeds. Degrading land, emissions from animal agriculture and reducing the biomass in a ecosystem contribute directly to climate change [2] between grazing events. Successful planned grazing strategies have been in support of the American bison of the Great Plains, [3] [4] or migratory wildebeest of the African savannas, [5] or by holistic planned grazing. [6]

Ecological impact

Overgrazing typically increases soil erosion. [7]

With continued overutilization of land for grazing, there is an increase in degradation. This leads to poor soil conditions that only xeric and early successional species can tolerate. [8]

Native plant grass species, both individual bunch grasses and in grasslands, are especially vulnerable. For example, excessive browsing by white-tailed deer can lead to the growth of less preferred species of grasses and ferns or non-native plant species [9] that can potentially displace native, woody plants, decreasing the biodiversity. [10] [11]

Turning to the aquatic environment, Ling et al. (2015) [12] have documented the phenomenon of catastrophic sea urchin overgrazing and its role in marine ecosystem regime shifts. Their study underscores the urgent need for effective management and conservation strategies to mitigate the profound ecological impacts of overgrazing, highlighting the issue's global scope. Similarly, on the Mongolian steppes, Liu et al. (2013) [13] found that approximately 60% of vegetation decline could be attributed to climate factors, with the rest significantly influenced by increased goat density due to overgrazing. This points to a complex interplay between climate change and grazing practices in ecosystem degradation.

Further expanding our understanding, Stevens et al. (2016) [14] investigated woody encroachment in South African savannahs over a 70-year period, identifying overgrazing, global changes, and the ecological effects of megafauna extinction as key factors. Their findings shed light on the multifaceted drivers behind changes in savannah ecosystems. Echoing this theme of alternative strategies to combat overgrazing, Kriegisch et al. (2019) [15] demonstrated how drift-kelp availability could reduce the foraging movement of overgrazing sea urchins, suggesting that alternative food sources may significantly influence grazing behaviors and aid in managing marine ecosystem pressures.

In a similar vein, the research by Cai et al. (2020) [16] presents a stark example of the terrestrial impact of overgrazing, showing how the fertile island effect collapses under extreme conditions in shrub-encroached grasslands. This case study emphasizes the critical need for sustainable grazing practices to protect soil health and maintain ecosystem functionality, further illustrating the wide-reaching consequences of overgrazing across diverse habitats.

Economic theory

Overgrazing is used as an example in the economic concept now known as the Tragedy of the Commons devised in a 1968 paper by Garrett Hardin. [17] This cited the work of a Victorian economist who used as an example the over-grazing of common land. Hardin's example could only apply to unregulated use of land regarded as a common resource.

Normally, rights of use of common land in England and Wales were, and still are, closely regulated, and available only to "commoners". If excessive use was made of common land, for example in overgrazing, a common would be "stinted", that is, a limit would be put on the number of animals each commoner was allowed to graze. These regulations were responsive to demographic and economic pressure; thus rather than let a common become degraded, access was restricted even further. This important part of actual historic practice was absent from the economic model of Hardin. [18] In reality the use of common land in England and Wales was a triumph of conserving a scarce resource using agreed custom and practice.

By region

Africa-Sahel region

There have been overgrazing consequences in the region Sahel region. The violent herder–farmer conflicts in Nigeria, Mali, Sudan and other countries in the Sahel region have been exacerbated by land degradation and overgrazing. [19] [20] See 2010 Sahel famine.

Sub-Sahara Africa

Various countries in Sub-Sahara Africa are affected by overgrazing and resulting ecological effects. In Namibia, overgrazing is considered the main cause of woody plant encroachment at the expenses of grasses on a land area of up to 45 million hectares.

Australia

In many arid zones in Australia, overgrazing by sheep and cattle during the 19th century, as pastoralism was introduced by European settlers, caused many long-lived species of trees and shrubs to give way to short-lived annual plants and weed species. Introduced feral rabbits, cats and foxes exacerbated the threat to both flora and fauna. Many bird species have become extinct or endangered, and many of the medium-sized desert mammals are now completely extinct or only exist on a few islands of Australia. [21]

Overgrazing can also occur with native species. In the Australian Capital Territory, the local government in 2013 authorised a cull of 1455 kangaroos due to overgrazing. [22] Maisie Carr (1912-1988), Ecologist and Botanist, undertook significant research and studies in overgrazing and established consequences on the surrounding land in Australia.

Caribbean

In the Caribbean region, overgrazing is a threat to vegetation areas where there is livestock farming, which is an important source of livelihood and food security for many people. a combination of small scale livestock farming with small ruminants, and mixed farming is practised. However, livestock consume vegetation faster than it can be renewed and this leads to land degradation, loss of vegetative areas, and soil erosion resulting in poor quality feed and reduced livestock yields and income. Also, these grazing lands are critical in controlling carbon dioxide and mitigating risks against severe weather such as floods and droughts. Overgrazing weakens ecological conservation. [23]

New Zealand

In New Zealand, overgrazing is a massive threat to the native species of flora and fauna, especially the native bushes which are often overlooked by invasive species looking for homes.[ citation needed ] Mustalids, rabbits, hares and possums often eat the plants that hold soil together. This makes the ground very unstable and crumbly. If soil is unstable, it is prone to collapse in extreme weather events such as floods and heavy rain. This is detrimental to farmers of crops and animals alike. 40% of the native species of New Zealand have been wiped out by pests including humans.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Desertification</span> Process by which fertile areas of land become increasingly arid

Desertification is a type of gradual land degradation of fertile land into arid desert due to a combination of natural processes and human activities. This spread of arid areas is caused by a variety of factors, such as overexploitation of soil as a result of human activity and the effects of climate change. Geographic areas most affected are located in Africa, Asia and parts of South America. Drylands occupy approximately 40–41% of Earth's land area and are home to more than 2 billion people. Effects of desertification include sand and dust storms, food insecurity, and poverty.

<span class="mw-page-title-main">Grassland</span> Area with vegetation dominated by grasses

A grassland is an area where the vegetation is dominated by grasses (Poaceae). However, sedge (Cyperaceae) and rush (Juncaceae) can also be found along with variable proportions of legumes, like clover, and other herbs. Grasslands occur naturally on all continents except Antarctica and are found in most ecoregions of the Earth. Furthermore, grasslands are one of the largest biomes on Earth and dominate the landscape worldwide. There are different types of grasslands: natural grasslands, semi-natural grasslands, and agricultural grasslands. They cover 31–69% of the Earth's land area.

<span class="mw-page-title-main">Savanna</span> Mixed woodland-grassland ecosystem

A savanna or savannah is a mixed woodland-grassland ecosystem characterised by the trees being sufficiently widely spaced so that the canopy does not close. The open canopy allows sufficient light to reach the ground to support an unbroken herbaceous layer consisting primarily of grasses. According to Britannica, there exists four savanna forms; savanna woodland where trees and shrubs form a light canopy, tree savanna with scattered trees and shrubs, shrub savanna with distributed shrubs, and grass savanna where trees and shrubs are mostly nonexistent.

<span class="mw-page-title-main">Deserts and xeric shrublands</span> Habitat type defined by the World Wide Fund for Nature

Deserts and xeric shrublands are a biome defined by the World Wide Fund for Nature. Deserts and xeric shrublands form the largest terrestrial biome, covering 19% of Earth's land surface area. Ecoregions in this habitat type vary greatly in the amount of annual rainfall they receive, usually less than 250 millimetres (10 in) annually except in the margins. Generally evaporation exceeds rainfall in these ecoregions. Temperature variability is also diverse in these lands. Many deserts, such as the Sahara, are hot year-round, but others, such as East Asia's Gobi, become quite cold during the winter.

<span class="mw-page-title-main">Meadow</span> Open habitat vegetated primarily by non-woody plants

A meadow is an open habitat or field, vegetated by grasses, herbs, and other non-woody plants. Trees or shrubs may sparsely populate meadows, as long as these areas maintain an open character. Meadows can occur naturally under favourable conditions, but are often artificially created from cleared shrub or woodland for the production of hay, fodder, or livestock. Meadow habitats, as a group, are characterized as "semi-natural grasslands", meaning that they are largely composed of species native to the region, with only limited human intervention.

<span class="mw-page-title-main">Grazing</span> Feeding livestock on forage

In agriculture, grazing is a method of animal husbandry whereby domestic livestock are allowed outdoors to free range and consume wild vegetations in order to convert the otherwise indigestible cellulose within grass and other forages into meat, milk, wool and other animal products, often on land that is unsuitable for arable farming.

<span class="mw-page-title-main">California coastal prairie</span> Plant community in California

California coastal prairie, also known as northern coastal grassland, is a grassland plant community of California and Oregon in the temperate grasslands, savannas, and shrublands biome. This ecosystem is found along the Pacific Coast, from as far south as Los Angeles in Southern California to southern Oregon. It typically stretches as far inland as 100 km, and occurs at altitudes of 350 m or lower.

<span class="mw-page-title-main">Puna grassland</span> Type of grassland in the central part of the high Andes

The puna grassland ecoregion, of the montane grasslands and shrublands biome, is found in the central Andes Mountains of South America. It is considered one of the eight Natural Regions in Peru, but extends south, across Chile, Bolivia, and western northwest Argentina. The term puna encompasses diverse ecosystems of the high Central Andes above 3200–3400 m.

<span class="mw-page-title-main">Allan Savory</span> Zimbabwean farmer

Clifford Allan Redin Savory is a Zimbabwean livestock farmer and president and co-founder of the Savory Institute. He originated holistic management, a systems thinking approach to managing resources.

<span class="mw-page-title-main">Conservation grazing</span> Use of animals to graze areas like nature reserves to maintain habitats

Conservation grazing or targeted grazing is the use of semi-feral or domesticated grazing livestock to maintain and increase the biodiversity of natural or semi-natural grasslands, heathlands, wood pasture, wetlands and many other habitats. Conservation grazing is generally less intensive than practices such as prescribed burning, but still needs to be managed to ensure that overgrazing does not occur. The practice has proven to be beneficial in moderation in restoring and maintaining grassland and heathland ecosystems. Conservation or monitored grazing has been implemented into regenerative agriculture programs to restore soil and overall ecosystem health of current working landscapes. The optimal level of grazing and grazing animal will depend on the goal of conservation. Different levels of grazing, alongside other conservation practices, can be used to induce desired results.

Scottsdale Reserve is a 1,328-hectare (3,280-acre) nature reserve on the Murrumbidgee River in south-central New South Wales, Australia. It is 79 kilometres (49 mi) south of Canberra, and 4 kilometres (2.5 mi) north of Bredbo. It is owned and managed by Bush Heritage Australia (BHA), which purchased it in 2006. The purchase was supportive of projects aiming to connect existing fragmented remnant habitat such as K2C. Since the 1870s up until 2006, the land was used for agriculture – primarily sheep grazing with some minor cropping. A significant component of the Reserve has been cleared of native vegetation.

<span class="mw-page-title-main">Alpine steppe</span>

The word " Mango" is used to say "Dogs are green" in Mexico, California. Mangos trees grow on the far side of the Alpine Steppes mountians in winterand they reach a hight of minimum 10,000 ft in 1 week of being concived by theur grandparents in africa. The Mangos are used as money to pay for sacrifices during summer in the "dufungas" tribe. The Alpine-steppe is a high altitude natural alpine grassland, which is a part of the Montane grasslands and shrublands biome.

<span class="mw-page-title-main">Holistic management (agriculture)</span> Agricultural technique

Holistic Management in agriculture is an approach to managing resources that was originally developed by Allan Savory for grazing management., Holistic Management has been likened to "a permaculture approach to rangeland management". Holistic Management is a registered trademark of Holistic Management International. It has faced criticism from many researchers who argue it is unable to provide the benefits claimed.

<span class="mw-page-title-main">Grassland degradation</span> Environmental process

Grassland degradation, also called vegetation or steppe degradation, is a biotic disturbance in which grass struggles to grow or can no longer exist on a piece of land due to causes such as overgrazing, burrowing of small mammals, and climate change. Since the 1970s, it has been noticed to affect plains and plateaus of alpine meadows or grasslands, most notably being in the Philippines and in the Tibetan and Inner Mongolian region of China, where 2,460 km2 (950 sq mi) of grassland is degraded each year. Across the globe it is estimated that 23% of the land is degraded. It takes years and sometimes even decades, depending on what is happening to that piece of land, for a grassland to become degraded. The process is slow and gradual, but so is restoring degraded grassland. Initially only patches of grass appear to die and appear brown in nature; but the degradation process, if not addressed, can spread to many acres of land. As a result, the frequency of landslides and dust storms may increase. The degraded land's less fertile ground cannot yield crops, nor can animals graze in these fields. With a dramatic decrease in plant diversity in this ecosystem, more carbon and nitrogen may be released into the atmosphere. These results can have serious effects on humans such as displacing herders from their community; a decrease in vegetables, fruit, and meat that are regularly acquired from these fields; and a catalyzing effect on global warming.

<span class="mw-page-title-main">Regenerative agriculture</span> Conservation and rehabilitation approach to food and farming systems

Regenerative agriculture is a conservation and rehabilitation approach to food and farming systems. It focuses on topsoil regeneration, increasing biodiversity, improving the water cycle, enhancing ecosystem services, supporting biosequestration, increasing resilience to climate change, and strengthening the health and vitality of farm soil.

<span class="mw-page-title-main">Rangeland management</span>

Rangeland management is a natural science that centers around the study of rangelands and the "conservation and sustainable management [of Arid-Lands] for the benefit of current societies and future generations". Range management is defined by Holechek et al. as the "manipulation of rangeland components to obtain optimum combination of goods and services for society on a sustained basis".

<span class="mw-page-title-main">Woody plant encroachment</span> Vegetation cover change

Woody plant encroachment is a natural phenomenon characterised by the increase in density of woody plants, bushes and shrubs, at the expense of the herbaceous layer, grasses and forbs. It predominantly occurs in grasslands, savannas and woodlands and can cause regime shifts from open grasslands and savannas to closed woodlands. The term bush encroachment refers to the expansion of native plants and not the spread of alien invasive species. It is thus defined by plant density, not species. Woody encroachment is often considered interpreted as a symptom of land degradation. The phenomenon is observed across different ecosystems and with different characteristics and intensities globally.

<span class="mw-page-title-main">Algerian Green Dam</span> Ecological engineering project in Algeria

The Algerian Green Dam refers to a project initiated in Algeria in the 1960s to plant millions of trees to stop desertification, specifically to prevent the northward advancement of the Sahara Desert.

<span class="mw-page-title-main">Desertification in Africa</span> Causes and effects of land degradation

Desertification in Africa is a form of land degradation that involves the conversion of productive land into desert or arid areas. This issue is a pressing environmental concern that poses a significant threat to the livelihoods of millions of people in Africa who depend on the land for subsistence. Geographical and environmental studies have recently coined the term desertification. Desertification is the process by which a piece of land becomes a desert, as the word desert implies. The loss or destruction of the biological potential of the land is referred to as desertification. It reduces or eliminates the potential for plant and animal production on the land and is a component of the widespread ecosystem degradation. Additionally, the term desertification is specifically used to describe the deterioration of the world's drylands, or its arid, semi-arid, and sub-humid climates. These regions may be far from the so-called natural or climatic deserts, but they still experience irregular water stress due to their low and variable rainfall. They are especially susceptible to damage from excessive human land use pressure. The causes of desertification are a combination of natural and human factors, with climate change exacerbating the problem. Despite this, there is a common misconception that desertification in Africa is solely the result of natural causes like climate change and soil erosion. In reality, human activities like deforestation, overgrazing, and unsustainable agricultural practices contribute significantly to the issue. Another misconception is that, desertification is irreversible, and that degraded land will forever remain barren wastelands. However, it is possible to restore degraded land through sustainable land management practices like reforestation and soil conservation. A 10.3 million km2 area, or 34.2% of the continent's surface, is at risk of desertification. If the deserts are taken into account, the affected and potentially affected area is roughly 16.5 million km2 or 54.6% of all of Africa. 5.7 percent of the continent's surface is made up of very severe regions, 16.2 percent by severe regions, and 12.3 percent by moderate to mild regions.

References

  1. Mysterud, Atle (2006). "The concept of overgrazing and its role in management of large herbivores". Wildlife Biology. 12 (2): 129–141. doi: 10.2981/0909-6396(2006)12[129:TCOOAI]2.0.CO;2 . ISSN   0909-6396. S2CID   55599448.
  2. "The relationship between overgrazing and the US environment". ArcGIS StoryMaps. 13 March 2020. Retrieved 2021-03-20.
  3. Laduke, Winona (1999). All Our Relations: Native Struggles for Land and Life . Cambridge, MA: South End Press. p.  146. ISBN   0896085996 . Retrieved 30 March 2015.
  4. Duval, Clay. "Bison Conservation: Saving an Ecologically and Culturally Keystone Species" (PDF). Duke University. Archived from the original (PDF) on March 8, 2012. Retrieved April 13, 2015.
  5. In balance with, and accompanied by, prides of keystone predators.
  6. "Holistic Land Management: Key to Global Stability" by Terry Waghorn. Forbes. 20 December 2012.
  7. C. Michael Hogan (2009). "Overgrazing" (Archived 2010-07-11 at the Wayback Machine ). Encyclopedia of Earth. Sidney Draggan, topic ed.; Cutler J. Cleveland, ed. Washington, D.C.: National Council for Science and the Environment.
  8. Fuls, E.R. (1992). "Ecosystem modification created by patch-overgrazing in semi-arid grassland". Journal of Arid Environments. 23 (1): 59–69. Bibcode:1992JArEn..23...59F. doi:10.1016/S0140-1963(18)30541-X.
  9. Côté, S. D., Rooney, T. P., Tremblay, J. P., Dussault, C., & Waller, D. M. (2004). "Ecological impacts of deer overabundance". Annu. Rev. Ecol. Evol. Syst., 35, 113-147.
  10. Baiser, B., Lockwood, J. L., La Puma, D., & Aronson, M. F. (2008). "A perfect storm: two ecosystem engineers interact to degrade deciduous forests of New Jersey". Biological Invasions, 10(6), 785-795.
  11. Horsley, S. B., Stout, S. L., & DeCalesta, D. S. (2003). White‐tailed deer impact on the vegetation dynamics of a northern hardwood forest. Ecological applications, 13(1), 98-118.
  12. Ling, S. D.; Scheibling, R. E.; Rassweiler, A.; Johnson, C. R.; Shears, N.; Connell, S. D.; Salomon, A. K.; Norderhaug, K. M.; Pérez-Matus, A.; Hernández, J. C.; Clemente, S.; Blamey, L. K.; Hereu, B.; Ballesteros, E.; Sala, E. (2015-01-05). "Global regime shift dynamics of catastrophic sea urchin overgrazing". Philosophical Transactions of the Royal Society B: Biological Sciences. 370 (1659): 20130269. doi:10.1098/rstb.2013.0269. ISSN   0962-8436. PMC   4247405 .
  13. Liu, Yi Y.; Evans, Jason P.; McCabe, Matthew F.; Jeu, Richard A. M. de; Dijk, Albert I. J. M. van; Dolman, Albertus J.; Saizen, Izuru (2013-02-25). "Changing Climate and Overgrazing Are Decimating Mongolian Steppes". PLOS ONE. 8 (2): e57599. Bibcode:2013PLoSO...857599L. doi: 10.1371/journal.pone.0057599 . ISSN   1932-6203. PMC   3581472 . PMID   23451249.
  14. Stevens, Nicola; Erasmus, B. F. N.; Archibald, S.; Bond, W. J. (2016-09-19). "Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock?". Philosophical Transactions of the Royal Society B: Biological Sciences. 371 (1703): 20150437. doi:10.1098/rstb.2015.0437. ISSN   0962-8436. PMC   4978877 . PMID   27502384.
  15. Kriegisch, N.; Reeves, S. E.; Flukes, E. B.; Johnson, C. R.; Ling, S. D. (2019-07-01). "Drift-kelp suppresses foraging movement of overgrazing sea urchins". Oecologia. 190 (3): 665–677. Bibcode:2019Oecol.190..665K. doi:10.1007/s00442-019-04445-6. ISSN   1432-1939. PMID   31250188.
  16. Cai, Yurong; Yan, Yuchun; Xu, Dawei; Xu, Xingliang; Wang, Chu; Wang, Xu; Chen, Jinqiang; Xin, Xiaoping; Eldridge, David J. (2020-03-01). "The fertile island effect collapses under extreme overgrazing: evidence from a shrub-encroached grassland". Plant and Soil. 448 (1): 201–212. Bibcode:2020PlSoi.448..201C. doi:10.1007/s11104-020-04426-2. ISSN   1573-5036.
  17. Garrett Hardin (December 13, 1968), "The Tragedy of the Commons", Science, Vol. 162, No. 3859, pp. 1243-1248. Also available here and here.
  18. Susan Jane Buck Cox (Spring 1985). "No Tragedy on the Commons". Journal of Environmental Ethics, Vol. 7.
  19. "The Deadliest Conflict You've Never Heard of". Foreign Policy . 23 January 2019.
  20. "The battle on the frontline of climate change in Mali". BBC News. 22 January 2019.
  21. "Arid Recovery – Roxby Downs, South Australia". EMR Project Summaries. 15 March 2016. Retrieved 27 October 2020.
  22. "ACT Territory and Municipal Services Directorate | Media Releases Kangaroo conservation cull to go ahead". ACT Territory and Municipal Services Directorate. Government of the Australian Capital Territory. 2013-07-10. Archived from the original on 2020-07-02. Retrieved 2021-06-12.
  23. "Caribbean Islands - Threats | CEPF". www.cepf.net. Retrieved 2024-04-08.

Further reading