Reaction quotient

Last updated

In chemical thermodynamics, the reaction quotient (Qr or just Q) [1] is a dimensionless quantity that provides a measurement of the relative amounts of products and reactants present in a reaction mixture for a reaction with well-defined overall stoichiometry at a particular point in time. Mathematically, it is defined as the ratio of the activities (or molar concentrations) of the product species over those of the reactant species involved in the chemical reaction, taking stoichiometric coefficients of the reaction into account as exponents of the concentrations. In equilibrium, the reaction quotient is constant over time and is equal to the equilibrium constant.

Contents

A general chemical reaction in which α moles of a reactant A and β moles of a reactant B react to give ρ moles of a product R and σ moles of a product S can be written as

.

The reaction is written as an equilibrium even though, in many cases, it may appear that all of the reactants on one side have been converted to the other side. When any initial mixture of A, B, R, and S is made, and the reaction is allowed to proceed (either in the forward or reverse direction), the reaction quotient Qr, as a function of time t, is defined as [2]

where {X}t denotes the instantaneous activity [3] of a species X at time t. A compact general definition is

where Пj denotes the product across all j-indexed variables, aj(t) is the activity of species j at time t, and νj is the stoichiometric number (the stoichiometric coefficient multiplied by +1 for products and –1 for starting materials).

Relationship to K (the equilibrium constant)

As the reaction proceeds with the passage of time, the species' activities, and hence the reaction quotient, change in a way that reduces the free energy of the chemical system. The direction of the change is governed by the Gibbs free energy of reaction by the relation

,

where K is a constant independent of initial composition, known as the equilibrium constant. The reaction proceeds in the forward direction (towards larger values of Qr) when ΔrG < 0 or in the reverse direction (towards smaller values of Qr) when ΔrG > 0. Eventually, as the reaction mixture reaches chemical equilibrium, the activities of the components (and thus the reaction quotient) approach constant values. The equilibrium constant is defined to be the asymptotic value approached by the reaction quotient:

and .

The timescale of this process depends on the rate constants of the forward and reverse reactions. In principle, equilibrium is approached asymptotically at t → ∞; in practice, equilibrium is considered to be reached, in a practical sense, when concentrations of the equilibrating species no longer change perceptibly with respect to the analytical instruments and methods used.

If a reaction mixture is initialized with all components having an activity of unity, that is, in their standard states, then

and .

This quantity, Δr, is called the standard Gibbs free energy of reaction. [4]

All reactions, regardless of how favorable, are equilibrium processes, though practically speaking, if no starting material is detected after a certain point by a particular analytical technique in question, the reaction is said to go to completion.

In biochemistry

In biochemistry, the reaction quotient is often referred to as the mass-action ratio with the symbol .

Example

The burning of octane, C8H18 + 25/2 O2 → 8CO2 + 9H2O has a ΔrG° ~ –240 kcal/mol, corresponding to an equilibrium constant of 10175, a number so large that it is of no practical significance, since there are only ~5 × 1024 molecules in a kilogram of octane.

Significance and applications

The reaction quotient plays a crucial role in understanding the direction and extent of a chemical reaction's progress towards equilibrium:

  1. Equilibrium condition: At equilibrium, the reaction quotient (Q) is equal to the equilibrium constant (K) for the reaction. This condition is represented as Q = K, indicating that the forward and reverse reaction rates are equal.
  2. Predicting reaction direction: If Q < K, the reaction will proceed in the forward direction to establish equilibrium. If Q > K, the reaction will proceed in the reverse direction to reach equilibrium.
  3. Extent of reaction: The difference between Q and K provides information about how far the reaction is from equilibrium. A larger difference indicates a greater driving force for the reaction to proceed towards equilibrium.
  4. Reaction kinetics: The reaction quotient can be used to study the kinetics of reversible reactions and determine rate laws, as it is related to the concentrations of reactants and products at any given time.
  5. Equilibrium constant determination: By measuring the concentrations of reactants and products at equilibrium, the equilibrium constant (K) can be calculated from the reaction quotient (Q = K at equilibrium).

The reaction quotient is a powerful concept in chemical kinetics and thermodynamics, enabling the prediction of reaction directions, the extent of reaction progress, and the determination of equilibrium constants. It finds applications in various fields, including chemical engineering, biochemistry, and environmental chemistry, where understanding the behavior of reversible reactions is crucial.

Related Research Articles

In a chemical reaction, chemical equilibrium is the state in which both the reactants and products are present in concentrations which have no further tendency to change with time, so that there is no observable change in the properties of the system. This state results when the forward reaction proceeds at the same rate as the reverse reaction. The reaction rates of the forward and backward reactions are generally not zero, but they are equal. Thus, there are no net changes in the concentrations of the reactants and products. Such a state is known as dynamic equilibrium.

<span class="mw-page-title-main">Electrochemistry</span> Branch of chemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.

<span class="mw-page-title-main">Stoichiometry</span> Calculation of relative weights of reactants and products in chemical reactions

Stoichiometry is the relationship between the weights of reactants and products before, during, and following chemical reactions.

Le Chatelier's principle, also called Chatelier's principle, is a principle of chemistry used to predict the effect of a change in conditions on chemical equilibrium. The principle is named after French chemist Henry Louis Le Chatelier, and sometimes also credited to Karl Ferdinand Braun, who discovered it independently. It can be defined as:

If the equilibrium of a system is disturbed by a change in one or more of the determining factors the system tends to adjust itself to a new equilibrium by counteracting as far as possible the effect of the change

Solubility equilibrium is a type of dynamic equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound. The solid may dissolve unchanged, with dissociation, or with chemical reaction with another constituent of the solution, such as acid or alkali. Each solubility equilibrium is characterized by a temperature-dependent solubility product which functions like an equilibrium constant. Solubility equilibria are important in pharmaceutical, environmental and many other scenarios.

In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities of the chemical species undergoing reduction and oxidation respectively. It was named after Walther Nernst, a German physical chemist who formulated the equation.

<span class="mw-page-title-main">Gibbs free energy</span> Type of thermodynamic potential

In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure-volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure. It also provides a necessary condition for processes such as chemical reactions that may occur under these conditions. The Gibbs free energy is expressed as

<span class="mw-page-title-main">Reaction rate</span> Speed at which a chemical reaction takes place

The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. Reaction rates can vary dramatically. For example, the oxidative rusting of iron under Earth's atmosphere is a slow reaction that can take many years, but the combustion of cellulose in a fire is a reaction that takes place in fractions of a second. For most reactions, the rate decreases as the reaction proceeds. A reaction's rate can be determined by measuring the changes in concentration over time.

The standard enthalpy of reaction for a chemical reaction is the difference between total product and total reactant molar enthalpies, calculated for substances in their standard states. The value can be approximately interpreted in terms of the total of the chemical bond energies for bonds broken and bonds formed.

Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics, which deals with the direction in which a reaction occurs but in itself tells nothing about its rate. Chemical kinetics includes investigations of how experimental conditions influence the speed of a chemical reaction and yield information about the reaction's mechanism and transition states, as well as the construction of mathematical models that also can describe the characteristics of a chemical reaction.

<span class="mw-page-title-main">Endergonic reaction</span> Chemical reaction which requires more energy to initiate than it produces

In chemical thermodynamics, an endergonic reaction is a chemical reaction in which the standard change in free energy is positive, and an additional driving force is needed to perform this reaction. In layman's terms, the total amount of useful energy is negative so the total energy is a net negative result, as opposed to a net positive result in an exergonic reaction. Another way to phrase this is that useful energy must be absorbed from the surroundings into the workable system for the reaction to happen.

The equilibrium constant of a chemical reaction is the value of its reaction quotient at chemical equilibrium, a state approached by a dynamic chemical system after sufficient time has elapsed at which its composition has no measurable tendency towards further change. For a given set of reaction conditions, the equilibrium constant is independent of the initial analytical concentrations of the reactant and product species in the mixture. Thus, given the initial composition of a system, known equilibrium constant values can be used to determine the composition of the system at equilibrium. However, reaction parameters like temperature, solvent, and ionic strength may all influence the value of the equilibrium constant.

In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law. Deviations from ideality are accommodated by modifying the concentration by an activity coefficient. Analogously, expressions involving gases can be adjusted for non-ideality by scaling partial pressures by a fugacity coefficient.

In chemical kinetics, a reaction rate constant or reaction rate coefficient is a proportionality constant which quantifies the rate and direction of a chemical reaction by relating it with the concentration of reactants.

In chemistry, the rate equation is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters only. For many reactions, the initial rate is given by a power law such as

The Van 't Hoff equation relates the change in the equilibrium constant, Keq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, ΔrH, for the process. The subscript means "reaction" and the superscript means "standard". It was proposed by Dutch chemist Jacobus Henricus van 't Hoff in 1884 in his book Études de Dynamique chimique.

<span class="mw-page-title-main">Transition state theory</span> Theory describing the reaction rates of elementary chemical reactions

In chemistry, transition state theory (TST) explains the reaction rates of elementary chemical reactions. The theory assumes a special type of chemical equilibrium (quasi-equilibrium) between reactants and activated transition state complexes.

Equilibrium constants are determined in order to quantify chemical equilibria. When an equilibrium constant K is expressed as a concentration quotient,

In electrochemistry, the Butler–Volmer equation, also known as Erdey-Grúz–Volmer equation, is one of the most fundamental relationships in electrochemical kinetics. It describes how the electrical current through an electrode depends on the voltage difference between the electrode and the bulk electrolyte for a simple, unimolecular redox reaction, considering that both a cathodic and an anodic reaction occur on the same electrode:

Equilibrium chemistry is concerned with systems in chemical equilibrium. The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero. This principle, applied to mixtures at equilibrium provides a definition of an equilibrium constant. Applications include acid–base, host–guest, metal–complex, solubility, partition, chromatography and redox equilibria.

References

  1. Cohen, E Richard; Cvitas, Tom; Frey, Jeremy G; Holström, Bertil; Kuchitsu, Kozo; Marquardt, Roberto; Mills, Ian; Pavese, Franco; Quack, Martin, eds. (2007). Quantities, Units and Symbols in Physical Chemistry (3 ed.). Cambridge: Royal Society of Chemistry. doi:10.1039/9781847557889. ISBN   978-0-85404-433-7.
  2. Zumdahl, Steven; Zumdahl, Susan (2003). Chemistry (6th ed.). Houghton Mifflin. ISBN   0-618-22158-1.
  3. Under certain circumstances (see chemical equilibrium) each activity term such as {A} may be replaced by a concentration term, [A]. Both the reaction quotient and the equilibrium constant are then concentration quotients.
  4. The standard free energy of reaction can be determined using the difference between the sum of the standard free energies of formation of products and the sum of the standard free energies of formation of reactants, accounting for stoichiometries: .

Reaction quotient tutorials


  1. "elchem website tutorial 1". Archived from the original on 23 January 2020. Retrieved 28 April 2021.
  2. "elchem website tutorial 2". Archived from the original on 23 January 2020. Retrieved 28 April 2021.
  3. "elchem website tutorial 3". Archived from the original on 23 January 2020. Retrieved 28 April 2021.