Total maximum daily load

Last updated

A total maximum daily load (TMDL) is a regulatory term in the U.S. Clean Water Act, describing a plan for restoring impaired waters that identifies the maximum amount of a pollutant that a body of water can receive while still meeting water quality standards. [1] [2] [3]

Contents

State and federal agency responsibilities

The Clean Water Act requires that state environmental agencies complete TMDLs for impaired waters and that the United States Environmental Protection Agency (EPA) review and approve / disapprove those TMDLs. [4] Because both state and federal governments are involved in completing TMDLs, the TMDL program is an example of cooperative federalism. If a state doesn't take action to develop TMDLs, or if EPA disapproves state-developed TMDLs, the EPA is responsible for issuing TMDLs. EPA published regulations in 1992 establishing TMDL procedures. [5] Application of TMDLs has broadened significantly in the last decade to include many watershed-scale efforts, including the Chesapeake Bay TMDL. [6] TMDLs identify all point source and nonpoint source pollutants within a watershed. [4]

State inventories

The Clean Water Act requires states to compile lists of water bodies that do not fully support beneficial uses such as aquatic life, fisheries, drinking water, recreation, industry, or agriculture; and to prioritize those water bodies for TMDL development. These inventories are known as "303(d) lists" and characterize waters as fully supporting, impaired, or in some cases threatened for beneficial uses. [7]

Planning process

Beneficial use determinations must have sufficient credible water quality data for TMDL planning.

Throughout the U.S., data are often lacking adequate spatial or temporal coverage to reliably establish the sources and magnitude of water quality degradation.

TMDL planning in large watersheds is a process that typically involves the following steps:

  1. Watershed characterization—understanding the basic physical, environmental, and human elements of the watershed.
  2. Impairment status—analyzing existing data to determine if waters fully support beneficial uses
  3. Data gaps and monitoring report—identification of any additional data needs and monitoring recommendations
  4. Source assessment—identification of sources of pollutants, and magnitude of sources.
  5. Load allocation—determination of natural pollutant load, and load from human activities (i.e. diffuse nonpoint sources and point discharges).
  6. Set targets—establishment of water quality targets intended to restore or maintain beneficial uses.
  7. TMDL implementation plan—a watershed management strategy to attain established targets. [7]

Water quality targets

The purpose of water quality targets is to protect or restore beneficial uses and protect human health. These targets may include state/federal numerical water quality standards or narrative standards, i.e. within the range of "natural" conditions. Establishing targets to restore beneficial uses is challenging and sometimes controversial. For example, the restoration of a fishery may require reducing temperatures, nutrients, sediments, and improving habitat. [7]

Necessary values for each pollutant target to restore fisheries can be uncertain. The potential for a water body to support a fishery even in a pristine state can be uncertain.

Background

Calculating the TMDL for any given body of water involves the combination of factors that contribute to the problem of nutrient concentrated runoff. Bodies of water are tested for contaminants based on their intended use. Each body of water is tested similarly but designated with a different TMDL. Drinking water reservoirs are designated differently from areas for public swimming and water bodies intended for fishing are designated differently from water located in wildlife conservation areas. The size of the water body also is taken into consideration when TMDL calculating is undertaken. The larger the body of water, the greater the amounts of contaminants can be present and still maintain a margin of safety. The margin of safety (MOS) is numeric estimate included in the TMDL calculation, sometimes 10% of the TMDL, intended to allow a safety buffer between the calculated TMDL and the actual load that will allow the water body to meet its beneficial use (since the natural world is complex and several variables may alter future conditions). TMDL is the end product of all point and non-point source pollutants of a single contaminant. Pollutants that originate from a point source are given allowable levels of contaminants to be discharged; this is the waste load allocation (WLA). Nonpoint source pollutants are also calculated into the TMDL equation with load allocation (LA). [7]

Calculation

The calculation of a TMDL is as follows:

where WLA is the waste load allocation for point sources, LA is the load allocation for nonpoint sources, and MOS is the margin of safety. [8] [2] [3] [9] [10] [11] [12]

Load allocations

Load allocations are equally challenging as setting targets. Load allocations provide a framework for determining the relative share of natural sources and human sources of pollution.

The natural background load for a pollutant may be imprecisely understood. Industrial dischargers, farmers, land developers, municipalities, natural resource agencies, and other watershed stakeholders each have a vested interest in the outcome. [7]

Implementation

To implement TMDLs with point sources, wasteload allocations are incorporated into discharge permits for these sources. [13] The permits are issued by EPA or delegated state agencies under the National Pollutant Discharge Elimination System (NPDES). Nonpoint source discharges (e.g. agriculture) are generally in a voluntary compliance scenario. The TMDL implementation plan is intended to help bridge this divide and ensure that watershed beneficial uses are restored and maintained. Local watershed groups play a critical role in educating stakeholders, generating funding, and implementing projects to reduce nonpoint sources of pollution. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Stormwater</span> Water that originates during precipitation events and snow/ice melt

Stormwater, also written storm water, is water that originates from precipitation (storm), including heavy rain and meltwater from hail and snow. Stormwater can soak into the soil (infiltrate) and become groundwater, be stored on depressed land surface in ponds and puddles, evaporate back into the atmosphere, or contribute to surface runoff. Most runoff is conveyed directly as surface water to nearby streams, rivers or other large water bodies without treatment.

<span class="mw-page-title-main">Water quality</span> Assessment against standards for use

Water quality refers to the chemical, physical, and biological characteristics of water based on the standards of its usage. It is most frequently used by reference to a set of standards against which compliance, generally achieved through treatment of the water, can be assessed. The most common standards used to monitor and assess water quality convey the health of ecosystems, safety of human contact, extent of water pollution and condition of drinking water. Water quality has a significant impact on water supply and oftentimes determines supply options.

<span class="mw-page-title-main">Water pollution</span> Contamination of water bodies

Water pollution is the contamination of water bodies, usually as a result of human activities, so that it negatively affects its uses. Water bodies include lakes, rivers, oceans, aquifers, reservoirs and groundwater. Water pollution results when contaminants mix with these water bodies. Contaminants can come from one of four main sources: sewage discharges, industrial activities, agricultural activities, and urban runoff including stormwater. Water pollution is either surface water pollution or groundwater pollution. This form of pollution can lead to many problems, such as the degradation of aquatic ecosystems or spreading water-borne diseases when people use polluted water for drinking or irrigation. Another problem is that water pollution reduces the ecosystem services that the water resource would otherwise provide.

<span class="mw-page-title-main">Clean Water Act</span> 1972 U.S. federal law regulating water pollution

The Clean Water Act (CWA) is the primary federal law in the United States governing water pollution. Its objective is to restore and maintain the chemical, physical, and biological integrity of the nation's waters; recognizing the responsibilities of the states in addressing pollution and providing assistance to states to do so, including funding for publicly owned treatment works for the improvement of wastewater treatment; and maintaining the integrity of wetlands.

<span class="mw-page-title-main">Monocacy River</span> River in Maryland, United States

The Monocacy River is a free-flowing left tributary to the Potomac River, which empties into the Atlantic Ocean via the Chesapeake Bay. The river is 58.5 miles (94.1 km) long, with a drainage area of about 970 square miles (2,500 km2). It is the largest Maryland tributary to the Potomac.

<span class="mw-page-title-main">Agricultural wastewater treatment</span> Farm management for controlling pollution from confined animal operations and surface runoff

Agricultural wastewater treatment is a farm management agenda for controlling pollution from confined animal operations and from surface runoff that may be contaminated by chemicals in fertilizer, pesticides, animal slurry, crop residues or irrigation water. Agricultural wastewater treatment is required for continuous confined animal operations like milk and egg production. It may be performed in plants using mechanized treatment units similar to those used for industrial wastewater. Where land is available for ponds, settling basins and facultative lagoons may have lower operational costs for seasonal use conditions from breeding or harvest cycles. Animal slurries are usually treated by containment in anaerobic lagoons before disposal by spray or trickle application to grassland. Constructed wetlands are sometimes used to facilitate treatment of animal wastes.

<span class="mw-page-title-main">Nonpoint source pollution</span> Pollution resulting from multiple sources

Nonpoint source (NPS) pollution refers to diffuse contamination of water or air that does not originate from a single discrete source. This type of pollution is often the cumulative effect of small amounts of contaminants gathered from a large area. It is in contrast to point source pollution which results from a single source. Nonpoint source pollution generally results from land runoff, precipitation, atmospheric deposition, drainage, seepage, or hydrological modification where tracing pollution back to a single source is difficult. Nonpoint source water pollution affects a water body from sources such as polluted runoff from agricultural areas draining into a river, or wind-borne debris blowing out to sea. Nonpoint source air pollution affects air quality, from sources such as smokestacks or car tailpipes. Although these pollutants have originated from a point source, the long-range transport ability and multiple sources of the pollutant make it a nonpoint source of pollution; if the discharges were to occur to a body of water or into the atmosphere at a single location, the pollution would be single-point.

<span class="mw-page-title-main">Surface runoff</span> Flow of excess rainwater not infiltrating in the ground over its surface

Surface runoff is the unconfined flow of water over the ground surface, in contrast to channel runoff. It occurs when excess rainwater, stormwater, meltwater, or other sources, can no longer sufficiently rapidly infiltrate in the soil. This can occur when the soil is saturated by water to its full capacity, and the rain arrives more quickly than the soil can absorb it. Surface runoff often occurs because impervious areas do not allow water to soak into the ground. Furthermore, runoff can occur either through natural or human-made processes.

<span class="mw-page-title-main">DSSAM Model</span> Water quality computer simulation

The DSSAM Model is a computer simulation developed for the Truckee River to analyze water quality impacts from land use and wastewater management decisions in the Truckee River Basin. This area includes the cities of Reno and Sparks, Nevada as well as the Lake Tahoe Basin. The model is historically and alternatively called the Earth Metrics Truckee River Model. Since original development in 1984-1986 under contract to the U.S. Environmental Protection Agency (EPA), the model has been refined and successive versions have been dubbed DSSAM II and DSSAM III. This hydrology transport model is based upon a pollutant loading metric called Total maximum daily load (TMDL). The success of this flagship model contributed to the Agency's broadened commitment to the use of the underlying TMDL protocol in its national policy for management of most river systems in the United States.

<span class="mw-page-title-main">Hydrological transport model</span>

An hydrological transport model is a mathematical model used to simulate the flow of rivers, streams, groundwater movement or drainage front displacement, and calculate water quality parameters. These models generally came into use in the 1960s and 1970s when demand for numerical forecasting of water quality and drainage was driven by environmental legislation, and at a similar time widespread access to significant computer power became available. Much of the original model development took place in the United States and United Kingdom, but today these models are refined and used worldwide.

<span class="mw-page-title-main">Best management practice for water pollution</span> Term used in the United States and Canada to describe a type of water pollution control

Best management practices (BMPs) is a term used in the United States and Canada to describe a type of water pollution control. Historically the term has referred to auxiliary pollution controls in the fields of industrial wastewater control and municipal sewage control, while in stormwater management and wetland management, BMPs may refer to a principal control or treatment technique as well.

<span class="mw-page-title-main">Urban runoff</span> Surface runoff of water caused by urbanization

Urban runoff is surface runoff of rainwater, landscape irrigation, and car washing created by urbanization. Impervious surfaces are constructed during land development. During rain, storms, and other precipitation events, these surfaces, along with rooftops, carry polluted stormwater to storm drains, instead of allowing the water to percolate through soil. This causes lowering of the water table and flooding since the amount of water that remains on the surface is greater. Most municipal storm sewer systems discharge untreated stormwater to streams, rivers, and bays. This excess water can also make its way into people's properties through basement backups and seepage through building wall and floors.

<span class="mw-page-title-main">Assimilative capacity</span>

Assimilative capacity is the ability for pollutants to be absorbed by an environment without detrimental effects to the environment or those who use of it. Natural absorption into an environment is achieved through dilution, dispersion and removal through chemical or biological processes. The term assimilative capacity has been used interchangeably with environmental capacity, receiving capacity and absorptive capacity. It is used as a measurement perimeter in hydrology, meteorology and pedology for a variety of environments examples consist of: lakes, rivers, oceans, cities and soils. Assimilative capacity is a subjective measurement that is quantified by governments and institutions such as Environmental Protection Agency (EPA) of environments into guidelines. Using assimilative capacity as a guideline can help the allocation of resources while reducing the impact on organisms in an environment. This concept is paired with carrying capacity in order to facilitate sustainable development of city regions. Assimilative capacity has been critiqued as to its effectiveness due to ambiguity in its definition that can confuses readers and false assumptions that a small amount of pollutants has no harmful effect on an environment.

<span class="mw-page-title-main">Nutrient pollution</span> Contamination of water by excessive inputs of nutrients

Nutrient pollution, a form of water pollution, refers to contamination by excessive inputs of nutrients. It is a primary cause of eutrophication of surface waters, in which excess nutrients, usually nitrogen or phosphorus, stimulate algal growth. Sources of nutrient pollution include surface runoff from farm fields and pastures, discharges from septic tanks and feedlots, and emissions from combustion. Raw sewage is a large contributor to cultural eutrophication since sewage is high in nutrients. Releasing raw sewage into a large water body is referred to as sewage dumping, and still occurs all over the world. Excess reactive nitrogen compounds in the environment are associated with many large-scale environmental concerns. These include eutrophication of surface waters, harmful algal blooms, hypoxia, acid rain, nitrogen saturation in forests, and climate change.

<span class="mw-page-title-main">Water quality law</span>

Water quality laws govern the protection of water resources for human health and the environment. Water quality laws are legal standards or requirements governing water quality, that is, the concentrations of water pollutants in some regulated volume of water. Such standards are generally expressed as levels of a specific water pollutants that are deemed acceptable in the water volume, and are generally designed relative to the water's intended use - whether for human consumption, industrial or domestic use, recreation, or as aquatic habitat. Additionally, these laws provide regulations on the alteration of the chemical, physical, radiological, and biological characteristics of water resources. Regulatory efforts may include identifying and categorizing water pollutants, dictating acceptable pollutant concentrations in water resources, and limiting pollutant discharges from effluent sources. Regulatory areas include sewage treatment and disposal, industrial and agricultural waste water management, and control of surface runoff from construction sites and urban environments. Water quality laws provides the foundation for regulations in water standards, monitoring, required inspections and permits, and enforcement. These laws may be modified to meet current needs and priorities.

<span class="mw-page-title-main">Water pollution in the United States</span> Overview of water pollution in the United States of America

Water pollution in the United States is a growing problem that became critical in the 19th century with the development of mechanized agriculture, mining, and industry, although laws and regulations introduced in the late 20th century have improved water quality in many water bodies. Extensive industrialization and rapid urban growth exacerbated water pollution as a lack of regulation allowed for discharges of sewage, toxic chemicals, nutrients and other pollutants into surface water.

Water quality modeling involves water quality based data using mathematical simulation techniques. Water quality modeling helps people understand the eminence of water quality issues and models provide evidence for policy makers to make decisions in order to properly mitigate water. Water quality modeling also helps determine correlations to constituent sources and water quality along with identifying information gaps. Due to the increase in freshwater usage among people, water quality modeling is especially relevant both in a local level and global level. In order to understand and predict the changes over time in water scarcity, climate change, and the economic factor of water resources, water quality models would need sufficient data by including water bodies from both local and global levels.

<span class="mw-page-title-main">Nonpoint source water pollution regulations in the United States</span>

Nonpoint source (NPS) water pollution regulations are environmental regulations that restrict or limit water pollution from diffuse or nonpoint effluent sources such as polluted runoff from agricultural areas in a river catchments or wind-borne debris blowing out to sea. In the United States, governments have taken a number of legal and regulatory approaches to controlling NPS effluent. Nonpoint water pollution sources include, for example, leakage from underground storage tanks, storm water runoff, atmospheric deposition of contaminants, and golf course, agricultural, and forestry runoff.

<span class="mw-page-title-main">United States regulation of point source water pollution</span> Overview of the regulation of point source water pollution in the United States of America

Point source water pollution comes from discrete conveyances and alters the chemical, biological, and physical characteristics of water. In the United States, it is largely regulated by the Clean Water Act (CWA). Among other things, the Act requires dischargers to obtain a National Pollutant Discharge Elimination System (NPDES) permit to legally discharge pollutants into a water body. However, point source pollution remains an issue in some water bodies, due to some limitations of the Act. Consequently, other regulatory approaches have emerged, such as water quality trading and voluntary community-level efforts.

<span class="mw-page-title-main">Stochastic empirical loading and dilution model</span>

The stochastic empirical loading and dilution model (SELDM) is a stormwater quality model. SELDM is designed to transform complex scientific data into meaningful information about the risk of adverse effects of runoff on receiving waters, the potential need for mitigation measures, and the potential effectiveness of such management measures for reducing these risks. The U.S. Geological Survey developed SELDM in cooperation with the Federal Highway Administration to help develop planning-level estimates of event mean concentrations, flows, and loads in stormwater from a site of interest and from an upstream basin. SELDM uses information about a highway site, the associated receiving-water basin, precipitation events, stormflow, water quality, and the performance of mitigation measures to produce a stochastic population of runoff-quality variables. Although SELDM is, nominally, a highway runoff model is can be used to estimate flows concentrations and loads of runoff-quality constituents from other land use areas as well. SELDM was developed by the U.S. Geological Survey so the model, source code, and all related documentation are provided free of any copyright restrictions according to U.S. copyright laws and the USGS Software User Rights Notice. SELDM is widely used to assess the potential effect of runoff from highways, bridges, and developed areas on receiving-water quality with and without the use of mitigation measures. Stormwater practitioners evaluating highway runoff commonly use data from the Highway Runoff Database (HRDB) with SELDM to assess the risks for adverse effects of runoff on receiving waters.

References

  1. United States. Clean Water Act, sec. 303(d), 33 U.S.C.   § 1313(d)
  2. 1 2 National Research Council (2001). Assessing the TMDL Approach to Water Quality Management (Report). Washington, DC: National Academies Press. doi:10.17226/10146. ISBN   978-0-309-07579-4.
  3. 1 2 National Academies of Sciences, Engineering and Medicine (2019). Approaches for Determining and Complying with TMDL Requirements Related to Roadway Stormwater Runoff (Report). National Academies Press. doi:10.17226/25473. ISBN   978-0-309-49376-5.
  4. 1 2 "Overview of Identifying and Restoring Impaired Waters under Section 303(d) of the CWA". Impaired Waters and TMDLs. EPA. 2021-09-20.
  5. EPA. "Water Quality Planning and Management: Total maximum daily loads (TMDL) and individual water quality-based effluent limitations". Code of Federal Regulations, 40 CFR 130.7 .
  6. Chesapeake Bay TMDL Executive Summary (PDF) (Report). EPA. 2010-12-29.
  7. 1 2 3 4 5 6 "Overview of Total Maximum Daily Loads". EPA. 2021-09-20.
  8. A. Shirmohammadi; I. Chaubey; R. D. Harmel; D. D. Bosch; R. Muñoz-Carpena; C. Dharmasri; A. Sexton; M. Arabi; M. L. Wolfe; J. Frankenberger; C. Graff; T. M. Sohrabi (2006). "Uncertainty in TMDL Models". Transactions of the American Society of Agricultural and Biological Engineers. 49 (4): 1033–1049. doi:10.13031/2013.21741. hdl: 10919/48202 .
  9. Granato, G.E.; Jones, S.C. (2017). "Estimating Total Maximum Daily Loads with the Stochastic Empirical Loading and Dilution Model". Transportation Research Record. Transportation Research Board; National Academies of Sciences, Engineering and Medicine. 2638: 104–112. doi:10.3141/2638-12. S2CID   116016432. 2638.
  10. Lantin, A., Larsen, L., Vyas, A., Barrett, M., Leisenring, M., Koryto, K., and Pechacek, L., 2019, Approaches for determining and complying with TMDL requirements related to roadway stormwater runoff: National Academies Press, National Cooperative Highway Research Program Research Report 918, 133 p. [Also available at https://doi.org/10.17226/25473.]
  11. Granato, G.E., and Friesz, P.J., 2021, Approaches for assessing long-term annual yields of highway and urban runoff in selected areas of California with the Stochastic Empirical Loading and Dilution Model (SELDM): U.S. Geological Survey Scientific Investigations Report 2021–5043, 37 p., https://doi.org/10.3133/sir20215043
  12. Granato, G.E., Spaetzel, A.B., and Jeznach, L.C., 2023, Approaches for assessing flows, concentrations, and loads of highway and urban runoff and receiving-stream stormwater in southern New England with the Stochastic Empirical Loading and Dilution Model (SELDM): U.S. Geological Survey Scientific Investigations Report 2023–5087, 152 p., https://doi.org/10.3133/sir20235087.
  13. "Chapter 6: Water Quality-Based Effluent Limitations". NPDES Permit Writers' Manual (Report). EPA. September 2010. EPA 833-K-10-001.