Ulinastatin

Last updated
Ulinastatin
Clinical data
Trade names Miraclid
AHFS/Drugs.com International Drug Names
Routes of
administration
Intravenous infusion
ATC code
Identifiers
CAS Number
DrugBank
UNII
KEGG

Ulinastatin is a glycoprotein that is isolated from healthy human urine or synthetically produced and has molecular weight of 25 - 40kDa. It acts as a urinary trypsin inhibitor (UTI). Highly purified ulinastatin has been clinically used for the treatment of acute pancreatitis, chronic pancreatitis, Stevens–Johnson syndrome, burns, septic shock, and toxic epidermal necrolysis (TEN).

Contents

The drug is used in Japan, where its brand name is Miraclid, as well as in South Korea, China, and India. In India, where it is approved to treat severe sepsis and acute pancreatitis, it is marketed under the brand name Ulihope, Ulicrit-Liquid, Ulinase,U-Tryp in India. It is also known by the names Bikunin and Urinastatin. In China, where it is approved to treat acute pancreatitis, chronic recurrent pancreatitis and acute circulatory failure, it is marketed under the brand name Techpool Roan.

Effectiveness

Ulinastatin is available in countries like China, Japan and India for the management of sepsis and acute pancreatitis.

In Japan, It is clinically used to treat endoscopic retrograde cholangiopancreatography (ERCP)-induced pancreatitis. Studies in Japan have documented a reduction in the incidence of ERCP-induced pancreatitis with the use of ulinastatin. In one study, the incidence of hyperenzymemia and pancreatitis was significantly lower in the ulinastatin group than in the placebo group. [1] In another study, ulinastatin reduced serum, drain amylase, and the incidence of postoperative pancreatitis following pancreaticoduodenectomy. [2]

A study conducted in India found that mortality from all causes over 22 days in subjects with severe pancreatitis was lower among those receiving ulinastatin than those receiving placebo (2.8% versus 18.8%; p=0.048), resulting in a 16% absolute reduction in the risk of death and a relative reduction of 85%. The results indicated that in this population, one life would be saved for every 6.25 subjects treated with ulinastatin. New organ dysfunction was seen in 12 subjects with severe pancreatitis on ulinastatin and 29 on placebo (p=0.0026). [3]

Mechanism of action

Ulinastatin is an acid-resistant protease inhibitor found in human urine and released from the high-molecular-weight precursor I alpha T1. It inactivates many serine proteases, including trypsin, chymotrypsin, kallikrein, plasmin, granulocyte elastase, cathepsin, thrombin, and factors IXa, Xa, XIa, and XlIa. However, although ulinastatin is a protease inhibitor, its activity toward various proteases is relatively weak.

Ulinastatin protein has been found in the brain, liver, kidney, gastrointestinal tract, cartilage, plasma, ovarian follicular fluid, amniotic fluid, and urine. Its mRNA has been detected only in the liver, kidney, heart, lungs, and pancreas. The presence of ulinastatin in certain tissues appears to be due to diffusional uptake and retention through cell surfaces. Ulinastatin also potentiates local anti-proteolytic activity on the extracellular matrix (ECM) during tissue remodeling, possibly through noncovalent binding to TSG-6.

Its secretion is upregulated by pro-inflammatory cytokines, including IL-6, IL-1beta, and TNF-alpha. These cytokines also enhance the synthesis of intracellular I alpha T1 proteins and IL-1beta upregulated ulinastatin. Ulinastatin is implicated in downregulating or suppressing the production of proMMP-1 and proMMP, prostaglandin H2 synthase-2, urokinase, CXC chemokine, pro-inflammatory cytokines, inducible nitric oxide synthase, tissue factor, P-selectin, intercellular adhesion molecule-1, phosphorylation of the extracellular signal-regulated protein kinases, and NF-kappaB activation.

Ulinastatin also suppresses neutrophil accumulation and activity. The genes and proteins regulated by ulinastatin are implicated in the inflammatory process. Therefore, ulinastatin is not just a protease inhibitor, but can also prevent inflammation and cytokine-dependent signaling pathways. In preclinical and clinical studies, ulinastatin protected against acute lung injury, graft ischemia/reperfusion injury, renal failure after cardiopulmonary bypass, severe burn injury, septic shock, preterm birth, tumor invasion, and metastasis. Its anti-metastatic properties may come from the inhibition of cell-bound plasmin activity. Ulinastatin also prevents tumor progression, partially by inhibiting cathepsin B activity. In particular, ulinastatin is thought to inhibit CD44 dimerization and suppress the MAP kinase signaling cascade, thus preventing ECM degradation, tumor cell invasion, and angiogenesis.

Altogether, ulinastatin plays an important role not only in the protection of organ injury during severe inflammation, but also in the inhibition of tumor invasion and metastasis. [4] [5]

Dosage and administration

Patients are typically given one or two 100,000 I.U. vials of ulinastatin (reconstituted in 100 ml of dextrose 5% or 100 ml of 0.9% normal saline) by intravenous infusion over the course of one hour, one to three times per day for three to five days. The dosage may be adjusted according to patients' age and the severity of symptoms. [6]

Related Research Articles

<span class="mw-page-title-main">Pancreatitis</span> Inflammation of the pancreas

Pancreatitis is a condition characterized by inflammation of the pancreas. The pancreas is a large organ behind the stomach that produces digestive enzymes and a number of hormones. There are two main types: acute pancreatitis, and chronic pancreatitis.

<span class="mw-page-title-main">Inflammation</span> Physical effects resulting from activation of the immune system

Inflammation is part of the biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants. The five cardinal signs are heat, pain, redness, swelling, and loss of function.

<span class="mw-page-title-main">Cytokine</span> Broad and loose category of small proteins important in cell signaling

Cytokines are a broad and loose category of small proteins important in cell signaling. Due to their size, cytokines cannot cross the lipid bilayer of cells to enter the cytoplasm and therefore typically exert their functions by interacting with specific cytokine receptors on the target cell surface. Cytokines have been shown to be involved in autocrine, paracrine and endocrine signaling as immunomodulating agents.

<span class="mw-page-title-main">Tumor necrosis factor</span> Protein

Tumor necrosis factor is a cytokine and member of the TNF superfamily, which consists of various transmembrane proteins with a homologous TNF domain. It is the first cytokine to be described as an adipokine as secreted by adipose tissue.

<span class="mw-page-title-main">Endoscopic retrograde cholangiopancreatography</span> Use of endoscopy and fluoroscopy to treat and diagnose digestive issues.

Endoscopic retrograde cholangiopancreatography (ERCP) is a technique that combines the use of endoscopy and fluoroscopy to diagnose and treat certain problems of the biliary or pancreatic ductal systems. It is primarily performed by highly skilled and specialty trained gastroenterologists. Through the endoscope, the physician can see the inside of the stomach and duodenum, and inject a contrast medium into the ducts in the biliary tree and pancreas so they can be seen on radiographs.

<span class="mw-page-title-main">Acute pancreatitis</span> Medical condition

Acute pancreatitis (AP) is a sudden inflammation of the pancreas. Causes, in order of frequency, include: a gallstone impacted in the common bile duct beyond the point where the pancreatic duct joins it; heavy alcohol use; systemic disease; trauma; and, in children, mumps. Acute pancreatitis may be a single event; it may be recurrent; or it may progress to chronic pancreatitis.

<span class="mw-page-title-main">Chronic pancreatitis</span> Medical condition

Chronic pancreatitis is a long-standing inflammation of the pancreas that alters the organ's normal structure and functions. It can present as episodes of acute inflammation in a previously injured pancreas, or as chronic damage with persistent pain or malabsorption. It is a disease process characterized by irreversible damage to the pancreas as distinct from reversible changes in acute pancreatitis. Tobacco smoke and alcohol misuse are two of the most frequently implicated causes, and the two risk factors are thought to have a synergistic effect with regards to the development of chronic pancreatitis. Chronic pancreatitis is a risk factor for the development of pancreatic cancer.

A trypsin inhibitor (TI) is a protein and a type of serine protease inhibitor (serpin) that reduces the biological activity of trypsin by controlling the activation and catalytic reactions of proteins. Trypsin is an enzyme involved in the breakdown of many different proteins, primarily as part of digestion in humans and other animals such as monogastrics and young ruminants. Serpins – including trypsin inhibitors – are irreversible and suicide substrate-like inhibitors.

<span class="mw-page-title-main">Ascending cholangitis</span> Medical condition

Ascending cholangitis, also known as acute cholangitis or simply cholangitis, is inflammation of the bile duct, usually caused by bacteria ascending from its junction with the duodenum. It tends to occur if the bile duct is already partially obstructed by gallstones.

<span class="mw-page-title-main">Cathepsin S</span> Protein-coding gene in the species Homo sapiens

Cathepsin S is a protein that in humans is encoded by the CTSS gene. Transcript variants utilizing alternative polyadenylation signals exist for this gene.

A TNF inhibitor is a pharmaceutical drug that suppresses the physiologic response to tumor necrosis factor (TNF), which is part of the inflammatory response. TNF is involved in autoimmune and immune-mediated disorders such as rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease, psoriasis, hidradenitis suppurativa and refractory asthma, so TNF inhibitors may be used in their treatment. The important side effects of TNF inhibitors include lymphomas, infections, congestive heart failure, demyelinating disease, a lupus-like syndrome, induction of auto-antibodies, injection site reactions, and systemic side effects.

<span class="mw-page-title-main">Cathepsin G</span> Protein-coding gene in the species Homo sapiens

Cathepsin G is a protein that in humans is encoded by the CTSG gene. It is one of the three serine proteases of the chymotrypsin family that are stored in the azurophil granules, and also a member of the peptidase S1 protein family. Cathepsin G plays an important role in eliminating intracellular pathogens and breaking down tissues at inflammatory sites, as well as in anti-inflammatory response.

<span class="mw-page-title-main">SPINK1</span> Protein-coding gene in the species Homo sapiens

Pancreatic secretory trypsin inhibitor (PSTI) also known as serine protease inhibitor Kazal-type 1 (SPINK1) or tumor-associated trypsin inhibitor (TATI) is a protein that in humans is encoded by the SPINK1 gene.

<span class="mw-page-title-main">Nafamostat</span> Chemical compound

Nafamostatmesylate (INN), a synthetic serine protease inhibitor, it is a short-acting anticoagulant, and is also used for the treatment of pancreatitis. It also has some potential antiviral and anti-cancer properties. Nafamostat is a fast-acting proteolytic inhibitor and used during hemodialysis to prevent the proteolysis of fibrinogen into fibrin. The mechanism of action of Nafamostat is as a slow tight-binding substrate, trapping the target protein in the acyl-enzyme intermediate form, resulting in apparent observed inhibition.

<span class="mw-page-title-main">Semapimod</span> Chemical compound

Semapimod (INN), formerly known as CNI-1493, is an investigational new drug which has anti-inflammatory, anti-cytokine, immunomodulatory, antiviral and antimalarial properties.

Pancreatic stellate cells (PaSCs) are classified as myofibroblast-like cells that are located in exocrine regions of the pancreas. PaSCs are mediated by paracrine and autocrine stimuli and share similarities with the hepatic stellate cell. Pancreatic stellate cell activation and expression of matrix molecules constitute the complex process that induces pancreatic fibrosis. Synthesis, deposition, maturation and remodelling of the fibrous connective tissue can be protective, however when persistent it impedes regular pancreatic function.

Angiogenesis is the process of forming new blood vessels from existing blood vessels, formed in vasculogenesis. It is a highly complex process involving extensive interplay between cells, soluble factors, and the extracellular matrix (ECM). Angiogenesis is critical during normal physiological development, but it also occurs in adults during inflammation, wound healing, ischemia, and in pathological conditions such as rheumatoid arthritis, hemangioma, and tumor growth. Proteolysis has been indicated as one of the first and most sustained activities involved in the formation of new blood vessels. Numerous proteases including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinase domain (ADAM), a disintegrin and metalloproteinase domain with throbospondin motifs (ADAMTS), and cysteine and serine proteases are involved in angiogenesis. This article focuses on the important and diverse roles that these proteases play in the regulation of angiogenesis.

<span class="mw-page-title-main">Interleukin-1 family</span> Group of cytokines playing a key role in the regulation of immune and inflammatory responses

The Interleukin-1 family is a group of 11 cytokines that plays a central role in the regulation of immune and inflammatory responses to infections or sterile insults.

Microglia are the primary immune cells of the central nervous system, similar to peripheral macrophages. They respond to pathogens and injury by changing morphology and migrating to the site of infection/injury, where they destroy pathogens and remove damaged cells.

<span class="mw-page-title-main">Olamkicept</span> Chemical compound

Olamkicept, also known as soluble gp130Fc or sgp130Fc is an immunosuppressive drug candidate, which selectively blocks activities of the cytokine Interleukin-6, which are mediated by the soluble Interleukin-6. Interleukin-6 is a cytokine, which plays a dominant role in the regulation of the immune response and also in autoimmunity. Furthermore, Interleukin-6 has been demonstrated to be involved in the regulation of metabolism and body weight. Interleukin-6 also has many activities on neural cells. The biochemical principle was invented by the German biochemist Stefan Rose-John and it was further developed into a biotech compound by the Conaris Research Institute AG, which gave an exclusive world-wide license to the Swiss-based biopharmaceutical company Ferring Pharmaceuticals. In December 2016, Ferring and the biotech company I-MAB signed a licensing agreement granting I-MAB exclusive rights in Asia to Olamkicept for the treatment of autoimmune disease.

References

  1. Tsujino T, Komatsu Y, Isayama H, Hirano K, Sasahira N, Yamamoto N, Toda N, Ito Y, Nakai Y, Tada M, Matsumura M (April 2005). "Ulinastatin for pancreatitis after endoscopic retrograde cholangiopancreatography: a randomized, controlled trial". Clinical Gastroenterology and Hepatology. 3 (4): 376–83. doi: 10.1016/S1542-3565(04)00671-8 . PMID   15822043.
  2. Uemura K, Murakami Y, Hayashidani Y, Sudo T, Hashimoto Y, Ohge H, Sueda T (October 2008). "Randomized clinical trial to assess the efficacy of ulinastatin for postoperative pancreatitis following pancreaticoduodenectomy". Journal of Surgical Oncology. 98 (5): 309–13. doi:10.1002/jso.21098. PMID   18548482. S2CID   39112685.
  3. Journal of the association of physicians of India •August 2013 •VOL. 61 :15-18
  4. Shigetomi H, Onogi A, Kajiwara H, Yoshida S, Furukawa N, Haruta S, Tanase Y, Kanayama S, Noguchi T, Yamada Y, Oi H, Kobayashi H (September 2010). "Anti-inflammatory actions of serine protease inhibitors containing the Kunitz domain". Inflammation Research. 59 (9): 679–87. doi:10.1007/s00011-010-0205-5. PMID   20454830. S2CID   24139496.
  5. Inoue K, Takano H, Yanagisawa R, Yoshikawa T (November 2008). "Protective effects of urinary trypsin inhibitor on systemic inflammatory response induced by lipopolysaccharide". Journal of Clinical Biochemistry and Nutrition. 43 (3): 139–42. doi:10.3164/jcbn.2008059. PMC   2581759 . PMID   19015747.
  6. "Ulinastatin for Injection: Prescribing Information" (PDF). Bharat Serums and Vaccines Ltd.