(G,X)-manifold

Last updated

In geometry, if X is a manifold with an action of a topological group G by analytical diffeomorphisms, the notion of a (G, X)-structure on a topological space is a way to formalise it being locally isomorphic to X with its G-invariant structure; spaces with a (G, X)-structure are always manifolds and are called (G, X)-manifolds. This notion is often used with G being a Lie group and X a homogeneous space for G. Foundational examples are hyperbolic manifolds and affine manifolds.

Contents

Definition and examples

Formal definition

Let be a connected differential manifold and be a subgroup of the group of diffeomorphisms of which act analytically in the following sense:

if and there is a nonempty open subset such that are equal when restricted to then

(this definition is inspired by the analytic continuation property of analytic diffeomorphisms on an analytic manifold).

A -structure on a topological space is a manifold structure on whose atlas' charts has values in and transition maps belong to . This means that there exists:

such that every transition map is the restriction of a diffeomorphism in .

Two such structures are equivalent when they are contained in a maximal one, equivalently when their union is also a structure (i.e. the maps and are restrictions of diffeomorphisms in ).

Riemannian examples

If is a Lie group and a Riemannian manifold with a faithful action of by isometries then the action is analytic. Usually one takes to be the full isometry group of . Then the category of manifolds is equivalent to the category of Riemannian manifolds which are locally isometric to (i.e. every point has a neighbourhood isometric to an open subset of ).

Often the examples of are homogeneous under , for example one can take with a left-invariant metric. A particularly simple example is and the group of euclidean isometries. Then a manifold is simply a flat manifold.

A particularly interesting example is when is a Riemannian symmetric space, for example hyperbolic space. The simplest such example is the hyperbolic plane, whose isometry group is isomorphic to .

Pseudo-Riemannian examples

When is Minkowski space and the Lorentz group the notion of a -structure is the same as that of a flat Lorentzian manifold.

Other examples

When is the affine space and the group of affine transformations then one gets the notion of an affine manifold.

When is the n-dimensional real projective space and one gets the notion of a projective structure. [1]

Developing map and completeness

Developing map

Let be a -manifold which is connected (as a topological space). The developing map is a map from the universal cover to which is only well-defined up to composition by an element of .

A developing map is defined as follows: [2] fix and let be any other point, a path from to , and (where is a small enough neighbourhood of ) a map obtained by composing a chart of with the projection . We may use analytic continuation along to extend so that its domain includes . Since is simply connected the value of thus obtained does not depend on the original choice of , and we call the (well-defined) map a developing map for the -structure. It depends on the choice of base point and chart, but only up to composition by an element of .

Monodromy

Given a developing map , the monodromy or holonomy [3] of a -structure is the unique morphism which satisfies

.

It depends on the choice of a developing map but only up to an inner automorphism of .

Complete (G,X)-structures

A structure is said to be complete if it has a developing map which is also a covering map (this does not depend on the choice of developing map since they differ by a diffeomorphism). For example, if is simply connected the structure is complete if and only if the developing map is a diffeomorphism.

Examples

Riemannian (G,X)-structures

If is a Riemannian manifold and its full group of isometry, then a -structure is complete if and only if the underlying Riemannian manifold is geodesically complete (equivalently metrically complete). In particular, in this case if the underlying space of a -manifold is compact then the latter is automatically complete.

In the case where is the hyperbolic plane the developing map is the same map as given by the Uniformisation Theorem.

Other cases

In general compactness of the space does not imply completeness of a -structure. For example, an affine structure on the torus is complete if and only if the monodromy map has its image inside the translations. But there are many affine tori which do not satisfy this condition, for example any quadrilateral with its opposite sides glued by an affine map yields an affine structure on the torus, which is complete if and only if the quadrilateral is a parallelogram.

Interesting examples of complete, noncompact affine manifolds are given by the Margulis spacetimes.

(G,X)-structures as connections

In the work of Charles Ehresmann -structures on a manifold are viewed as flat Ehresmann connections on fiber bundles with fiber over , whose monodromy maps lie in .

Notes

  1. Dumas, David (2009). "Complex projective structures". In Papadopoulos, Athanase (ed.). Handbook of Teichmüller theory, Volume II. European MAth. soc.
  2. Thurston 1997, Chapter 3.4.
  3. Thurston 1997, p. 141.

Related Research Articles

In mathematics, the tangent space of a manifold generalizes to higher dimensions the notion of tangent planes to surfaces in three dimensions and tangent lines to curves in two dimensions. In the context of physics the tangent space to a manifold at a point can be viewed as the space of possible velocities for a particle moving on the manifold.

In differential geometry, a Riemannian manifold or Riemannian space(M, g), so called after the German mathematician Bernhard Riemann, is a real, smooth manifold M equipped with a positive-definite inner product gp on the tangent space TpM at each point p.

<span class="mw-page-title-main">Complex geometry</span> Study of complex manifolds and several complex variables

In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In mathematics, a submersion is a differentiable map between differentiable manifolds whose differential is everywhere surjective. This is a basic concept in differential topology. The notion of a submersion is dual to the notion of an immersion.

<span class="mw-page-title-main">Foliation</span> In mathematics, a type of equivalence relation on an n-manifold

In mathematics, a foliation is an equivalence relation on an n-manifold, the equivalence classes being connected, injectively immersed submanifolds, all of the same dimension p, modeled on the decomposition of the real coordinate space Rn into the cosets x + Rp of the standardly embedded subspace Rp. The equivalence classes are called the leaves of the foliation. If the manifold and/or the submanifolds are required to have a piecewise-linear, differentiable, or analytic structure then one defines piecewise-linear, differentiable, or analytic foliations, respectively. In the most important case of differentiable foliation of class Cr it is usually understood that r ≥ 1. The number p is called the dimension of the foliation and q = np is called its codimension.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

<span class="mw-page-title-main">Holonomy</span> Concept in differential geometry

In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a Riemannian manifold that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

In mathematics and physics, the Christoffel symbols are an array of numbers describing a metric connection. The metric connection is a specialization of the affine connection to surfaces or other manifolds endowed with a metric, allowing distances to be measured on that surface. In differential geometry, an affine connection can be defined without reference to a metric, and many additional concepts follow: parallel transport, covariant derivatives, geodesics, etc. also do not require the concept of a metric. However, when a metric is available, these concepts can be directly tied to the "shape" of the manifold itself; that shape is determined by how the tangent space is attached to the cotangent space by the metric tensor. Abstractly, one would say that the manifold has an associated (orthonormal) frame bundle, with each "frame" being a possible choice of a coordinate frame. An invariant metric implies that the structure group of the frame bundle is the orthogonal group O(p, q). As a result, such a manifold is necessarily a (pseudo-)Riemannian manifold. The Christoffel symbols provide a concrete representation of the connection of (pseudo-)Riemannian geometry in terms of coordinates on the manifold. Additional concepts, such as parallel transport, geodesics, etc. can then be expressed in terms of Christoffel symbols.

Pushforward (differential) Linear approximation of smooth maps on tangent spaces

In differential geometry, pushforward is a linear approximation of smooth maps on tangent spaces. Suppose that φ : MN is a smooth map between smooth manifolds; then the differential of φ, , at a point x is, in some sense, the best linear approximation of φ near x. It can be viewed as a generalization of the total derivative of ordinary calculus. Explicitly, the differential is a linear map from the tangent space of M at x to the tangent space of N at φ(x), . Hence it can be used to push tangent vectors on Mforward to tangent vectors on N. The differential of a map φ is also called, by various authors, the derivative or total derivative of φ.

In mathematics, an isotropic manifold is a manifold in which the geometry does not depend on directions. Formally, we say that a Riemannian manifold is isotropic if for any point and unit vectors , there is an isometry of with and . Every connected isotropic manifold is homogeneous, i.e. for any there is an isometry of with This can be seen by considering a geodesic from to and taking the isometry which fixes and maps to

<span class="mw-page-title-main">Differentiable manifold</span> Manifold upon which it is possible to perform calculus

In mathematics, a differentiable manifold is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible, then computations done in one chart are valid in any other differentiable chart.

In mathematics, a nilmanifold is a differentiable manifold which has a transitive nilpotent group of diffeomorphisms acting on it. As such, a nilmanifold is an example of a homogeneous space and is diffeomorphic to the quotient space , the quotient of a nilpotent Lie group N modulo a closed subgroup H. This notion was introduced by Anatoly Mal'cev in 1951.

In differential geometry, normal coordinates at a point p in a differentiable manifold equipped with a symmetric affine connection are a local coordinate system in a neighborhood of p obtained by applying the exponential map to the tangent space at p. In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.

In mathematics, the Abel–Jacobi map is a construction of algebraic geometry which relates an algebraic curve to its Jacobian variety. In Riemannian geometry, it is a more general construction mapping a manifold to its Jacobi torus. The name derives from the theorem of Abel and Jacobi that two effective divisors are linearly equivalent if and only if they are indistinguishable under the Abel–Jacobi map.

<span class="mw-page-title-main">Exponential map (Lie theory)</span>

In the theory of Lie groups, the exponential map is a map from the Lie algebra of a Lie group to the group which allows one to recapture the local group structure from the Lie algebra. The existence of the exponential map is one of the primary reasons that Lie algebras are a useful tool for studying Lie groups.

In the mathematical subject of group theory, a co-Hopfian group is a group that is not isomorphic to any of its proper subgroups. The notion is dual to that of a Hopfian group, named after Heinz Hopf.

In mathematics, the Cartan–Ambrose–Hicks theorem is a theorem of Riemannian geometry, according to which the Riemannian metric is locally determined by the Riemann curvature tensor, or in other words, behavior of the curvature tensor under parallel translation determines the metric.

In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.

References