1,3-Dimethyl-2-imidazolidinone

Last updated
1,3-Dimethyl-2-imidazolidinone
Dimethylimidazolidinone.png
1,3-Dimethyl-2-imidazolidinone 3D ball.png
Names
Preferred IUPAC name
1,3-Dimethylimidazolidin-2-one
Other names
Dimethylethyleneurea
N,N-Dimethylimidazolidinone
Identifiers
3D model (JSmol)
AbbreviationsDMI
ChEMBL
ChemSpider
ECHA InfoCard 100.001.187 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C5H10N2O/c1-6-3-4-7(2)5(6)8/h3-4H2,1-2H3 Yes check.svgY
    Key: CYSGHNMQYZDMIA-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C5H10N2O/c1-6-3-4-7(2)5(6)8/h3-4H2,1-2H3
    Key: CYSGHNMQYZDMIA-UHFFFAOYAB
  • O=C1N(C)CCN1C
  • CN1CCN(C1=O)C
Properties
C5H10N2O
Molar mass 114.1457
Appearancecolorless liquid
Melting point 8.2 [1]  °C (46.8 °F; 281.3 K)
Boiling point 225 °C (437 °F; 498 K)
Hazards
Flash point 120 °C (248 °F; 393 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

1,3-Dimethyl-2-imidazolidinone (DMI) is a cyclic urea used as a high-boiling polar aprotic solvent. [2] It is colourless, highly polar solvent has high thermal and chemical stability. It is a homolog of the related solvent DMPU. It can be prepared from 1,2-dimethylethylenediamine by reaction with phosgene.

Solvent

DMI has excellent solvating ability for both inorganic and organic compounds. In many applications, DMI (as well as DMPU) can be used as a substitute or replacement for the carcinogenic solvent HMPA. [3]

DMI is used in a variety of applications including detergents, dyestuffs, electronic materials and in the manufacture of polymers.[ citation needed ]

DMI is toxic in contact with skin. [4] [ dubious ]

Related Research Articles

<span class="mw-page-title-main">Solvent</span> Substance dissolving a solute resulting in a solution

A solvent is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for polar molecules and the most common solvent used by living things; all the ions and proteins in a cell are dissolved in water within the cell.

<span class="mw-page-title-main">Butadiene</span> Chemical compound

1,3-Butadiene is the organic compound with the formula CH2=CH-CH=CH2. It is a colorless gas that is easily condensed to a liquid. It is important industrially as a precursor to synthetic rubber. The molecule can be viewed as the union of two vinyl groups. It is the simplest conjugated diene.

<span class="mw-page-title-main">Organolithium reagent</span> Chemical compounds containing C–Li bonds

In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation. Organolithium reagents are used in industry as an initiator for anionic polymerization, which leads to the production of various elastomers. They have also been applied in asymmetric synthesis in the pharmaceutical industry. Due to the large difference in electronegativity between the carbon atom and the lithium atom, the C−Li bond is highly ionic. Owing to the polar nature of the C−Li bond, organolithium reagents are good nucleophiles and strong bases. For laboratory organic synthesis, many organolithium reagents are commercially available in solution form. These reagents are highly reactive, and are sometimes pyrophoric.

Dimethylformamide is an organic compound with the formula (CH3)2NC(O)H. Commonly abbreviated as DMF (although this initialism is sometimes used for dimethylfuran, or dimethyl fumarate), this colourless liquid is miscible with water and the majority of organic liquids. DMF is a common solvent for chemical reactions. Dimethylformamide is odorless, but technical-grade or degraded samples often have a fishy smell due to impurity of dimethylamine. Dimethylamine degradation impurities can be removed by sparging samples with an inert gas such as argon or by sonicating the samples under reduced pressure. As its name indicates, it is structurally related to formamide, having two methyl groups in the place of the two hydrogens. DMF is a polar (hydrophilic) aprotic solvent with a high boiling point. It facilitates reactions that follow polar mechanisms, such as SN2 reactions.

The 1,3-dipolar cycloaddition is a chemical reaction between a 1,3-dipole and a dipolarophile to form a five-membered ring. The earliest 1,3-dipolar cycloadditions were described in the late 19th century to the early 20th century, following the discovery of 1,3-dipoles. Mechanistic investigation and synthetic application were established in the 1960s, primarily through the work of Rolf Huisgen. Hence, the reaction is sometimes referred to as the Huisgen cycloaddition. 1,3-dipolar cycloaddition is an important route to the regio- and stereoselective synthesis of five-membered heterocycles and their ring-opened acyclic derivatives. The dipolarophile is typically an alkene or alkyne, but can be other pi systems. When the dipolarophile is an alkyne, aromatic rings are generally produced.

<span class="mw-page-title-main">Acetylacetone</span> Chemical compound

Acetylacetone is an organic compound with the chemical formula CH3COCH2COCH3. It is a colorless liquid, classified as a 1,3-diketone. It exists in equilibrium with a tautomer CH3C(O)CH=C(OH)CH3. These tautomers interconvert so rapidly under most conditions that they are treated as a single compound in most applications. It is a colorless liquid that is a precursor to acetylacetonate anion, a bidentate ligand. It is also a building block for the synthesis of heterocyclic compounds.

<span class="mw-page-title-main">Claisen rearrangement</span> Chemical reaction

The Claisen rearrangement is a powerful carbon–carbon bond-forming chemical reaction discovered by Rainer Ludwig Claisen. The heating of an allyl vinyl ether will initiate a [3,3]-sigmatropic rearrangement to give a γ,δ-unsaturated carbonyl, driven by exergonically favored carbonyl CO bond formation.

<span class="mw-page-title-main">Hexamethylphosphoramide</span> Chemical compound

Hexamethylphosphoramide, often abbreviated HMPA, is a phosphoramide (an amide of phosphoric acid) with the formula [(CH3)2N]3PO. This colorless liquid is a useful reagent in organic synthesis.

<span class="mw-page-title-main">Sulfoxide</span> Organic compound containing a sulfinyl group (>SO)

In organic chemistry, a sulfoxide, also called a sulfoxide, is an organosulfur compound containing a sulfinyl functional group attached to two carbon atoms. It is a polar functional group. Sulfoxides are oxidized derivatives of sulfides. Examples of important sulfoxides are alliin, a precursor to the compound that gives freshly crushed garlic its aroma, and dimethyl sulfoxide (DMSO), a common solvent.

Dioxolane is a heterocyclic acetal with the chemical formula (CH2)2O2CH2. It is related to tetrahydrofuran (THF) by replacement of the methylene group (CH2) at 2nd position of THF with an oxygen atom. The corresponding saturated 6-membered C4O2 rings are called dioxanes. The isomeric 1,2-dioxolane (wherein the two oxygen centers are adjacent) is a peroxide. 1,3-dioxolane is used as a solvent and as a comonomer in polyacetals.

<i>N</i>-Methyl-2-pyrrolidone Chemical compound

N-Methyl-2-pyrrolidone (NMP) is an organic compound consisting of a 5-membered lactam. It is a colorless liquid, although impure samples can appear yellow. It is miscible with water and with most common organic solvents. It also belongs to the class of dipolar aprotic solvents such as dimethylformamide and dimethyl sulfoxide. It is used in the petrochemical, polymer and battery industries as a solvent, exploiting its nonvolatility and ability to dissolve diverse materials.

<span class="mw-page-title-main">Carbonate ester</span> Chemical group (R–O–C(=O)–O–R)

In organic chemistry, a carbonate ester is an ester of carbonic acid. This functional group consists of a carbonyl group flanked by two alkoxy groups. The general structure of these carbonates is R−O−C(=O)−O−R' and they are related to esters, ethers and also to the inorganic carbonates.

<span class="mw-page-title-main">Dimethoxymethane</span> Chemical compound

Dimethoxymethane, also called methylal, is a colorless flammable liquid with a low boiling point, low viscosity and excellent dissolving power. It has a chloroform-like odor and a pungent taste. It is the dimethyl acetal of formaldehyde. Dimethoxymethane is soluble in three parts water and miscible with most common organic solvents.

<span class="mw-page-title-main">Hexafluorophosphate</span> Anion with the chemical formula PF6–

Hexafluorophosphate is an anion with chemical formula of [PF6]. It is an octahedral species that imparts no color to its salts. [PF6] is isoelectronic with sulfur hexafluoride, SF6, and the hexafluorosilicate dianion, [SiF6]2−, and hexafluoroantimonate [SbF6]. In this anion, phosphorus has a valence of 5. Being poorly nucleophilic, hexafluorophosphate is classified as a non-coordinating anion.

<span class="mw-page-title-main">Sulfolene</span> Chemical compound

Sulfolene, or butadiene sulfone is a cyclic organic chemical with a sulfone functional group. It is a white, odorless, crystalline, indefinitely storable solid, which dissolves in water and many organic solvents. The compound is used as a source of butadiene.

<span class="mw-page-title-main">DMPU</span> Chemical compound

N,N′-Dimethylpropyleneurea (DMPU) is a cyclic urea sometimes used as a polar, aprotic organic solvent. In 1985, Dieter Seebach showed that it is possible to replace the suspected carcinogen hexamethylphosphoramide (HMPA) with DMPU.

<span class="mw-page-title-main">Reductions with samarium(II) iodide</span>

Reductions with samarium(II) iodide involve the conversion of various classes of organic compounds into reduced products through the action of samarium(II) iodide, a mild one-electron reducing agent.

Reductions with hydrosilanes are methods used for hydrogenation and hydrogenolysis of organic compounds. The approach is a subset of ionic hydrogenation. In this particular method, the substrate is treated with a hydrosilane and auxiliary reagent, often a strong acid, resulting in formal transfer of hydride from silicon to carbon. This style of reduction with hydrosilanes enjoys diverse if specialized applications.

<span class="mw-page-title-main">Dimethylcarbamoyl chloride</span> Chemical compound

Dimethylcarbamoyl chloride (DMCC) is a reagent for transferring a dimethylcarbamoyl group to alcoholic or phenolic hydroxyl groups forming dimethyl carbamates, usually having pharmacological or pesticidal activities. Because of its high toxicity and its carcinogenic properties shown in animal experiments and presumably also in humans, dimethylcarbamoyl chloride can only be used under stringent safety precautions.

<span class="mw-page-title-main">Imidazolidinone</span> 5-membered ring organonitrogen heterocycle

Imidazolidinones or imidazolinones are a class of 5-membered ring heterocycles structurally related to imidazole. Imidazolidinones feature a saturated C3N2 nucleus, except for the presence of a urea or amide functional group in the 2 or 4 positions.

References

  1. DMI at Mitsui Chemicals
  2. Leahy, Ellen M. "1,3-Dimethyl-2-imidazolidinone" e-EROS Encyclopedia of Reagents for Organic Synthesis (2001), doi : 10.1002/047084289X.rd342
  3. Lo, C.-C.; Chao, P.-M. (1990). "Replacement of carcinogenic solvent HMPA by DMI in insect sex pheromone synthesis". Journal of Chemical Ecology. 16 (12): 3245–3253. doi:10.1007/BF00982095. PMID   24263426. S2CID   9859086.
  4. DMI at TCI