1A2 Key Telephone System

Last updated
A typical rotary dial key telephone: the Western Electric eighteen button Call Director, manufactured from 1958 to the early 80s. 18butt~1.png
A typical rotary dial key telephone: the Western Electric eighteen button Call Director, manufactured from 1958 to the early 80s.

The 1A2 Key Telephone System is a business telephone system developed and distributed by the Western Electric Company for the Bell System.

Contents

The 1A2 Key Telephone System is a modular system that provided flexible solutions for a variety of telephone service requirements. It provides multiple users with control over multiple telephone lines without the requirement for an operator, system attendant, or receptionist. Each user can select a specific telephone line to place calls on, or to answer calls, and manage those calls by placing them on hold or transferring them to other stations. The system provides options for station-to-station signaling and intercom, and music-on-hold. The control functions are operated directly on each telephone instrument with a set of push buttons (keys) that have lamps installed internally to provide visual indication of line status.

Introduced in 1964, the 1A2 system represents a stage of key telephone systems development at Bell Laboratories that started in the late 1930s with the 1A Key Telephone System, and was an improvement over the 1A1 system introduced in 1953. [1]

Compatible 1A2 equipment was manufactured by competing vendors, such as Northern Telecom, Automatic Electric (GTE), ITT, and Stromberg-Carlson. The successor technologies to the 1A2 Systems include the AT&T Merlin, AT&T Spirit, and AT&T Partner systems.

Components

The 1A2 Key Telephone System was produced to provide flexible solutions for widely varying telephone service requirements in businesses and enterprises.

The 1A2 system used a modular plug-in construction concept that permitted many configurations using the same basic components. A typical system consisted of a basic metal mounting frame, the Key Service Unit (KSU), also called a panel, with card-edge connectors and mounting brackets for components and punch-down blocks for interconnecting cabling. The principal switching and control modules were constructed on printed circuit boards, called Key Telephone Units (KTU). KTUs provided many system features, such as various types of line interfaces, dial intercom, music-on-hold, and alarms. Each central office telephone line connected to the system required at least one KTU.

The mounting panels varied according to the size and complexity of the telephone system. Typical early 1A2 systems used the Type 583 and 584 panels. The 584C panel contained an interrupter and 13 KTUs. The 583 panel did not have the interrupter and held 15 KTUs. [2] For smaller installations, panels were available that housed all components, including the power supply and connecting blocks. Typically these panels supported only four to six central office lines. [3]

The most commonly used telephone sets for the 1A2 systems were modifications of the Bell System standard 500-series telephones for rotary dial systems, and the 2500-series Touch-Tone desk sets. For key system operation these sets were equipped with a set of push-buttons (keys) and additional internal contact springs to control the additional operational features, resulting in a large variety of specialty telephones. Specifically, such telephone sets were the types 565 (up to 5 lines), 630 (17 lines), 631 (29 lines), 830 (9 lines), and 831 (19 lines). Telephone sets could be either rotary dial models, or be equipped with Touch-Tone keypads.

A power supply was either mounted within the panel or separately nearby. The power supply provided 24 VDC for relay operation, filtered 24 VDC for talk battery (intercom and direct-line services), 10 VAC for lamps, 18 VAC for buzzers, and 90–110 VAC at 30Hz for ringers. [4] Lamp and signaling voltages were routed through a mechanical interrupter, to create lamp flash (incoming line), lamp wink (hold), and interrupted buzzer and ringing.

Wiring

25 Pair Color Code Chart as used by 1A2 systems 25 pair color code chart.svg
25 Pair Color Code Chart as used by 1A2 systems

Wiring between system components and telephone sets was facilitated by Type 66 punch-down blocks.

For each telephone line from the central office, a key system required five pairs of internal wires: The central office tip and ring leads, the station (telephone instrument) tip and ring wires, the A and A1 control leads, lamp power and lamp ground, and the ring signaling pair.

Each connection to a telephone set required six wires from the key system: [5] One pair (two wires) carried the talk circuit (tip and ring), one pair carried control information, known as A-Leads, for that line, designated A and A1, and the third pair carried current to a lamp for the specific line key position on the telephone set (L and LG).

A telephone set (keyset) could operate as many lines as it had pickup keys (buttons) installed. Most keysets with up to nine lines are connected to the system using a single 25-pair cable terminated with an Amphenol 50-position "MicroRibbon" connector. Sets with up to 19 line positions used a 50-pair cable and the large instruments with 29 line positions used 75 pairs on three connectors. The Call Director model telephone had over 30 line key positions, and used 100 pairs on four connectors.

The keyset cables were typically routed to a wiring closet or wiring panel where the Key Service Unit (KSU) was installed and were terminated on a 66 type punch block, typically a model 66M1-50. Each of these blocks could accept two 25-pair cables for termination.

Cross-connect wire jumpers, consisting of three twisted pairs, were installed between these blocks and the larger distribution connecting blocks within the KSU for each line provided to the telephone set.

Large 1A2 installations had multiple wiring closets fed by branch cables extended from the central closet where the KSU was located. An example of this type of installation would be a multi-story building. The KSU and incoming lines might be in the basement, while each floor had a branch wiring closet to which the telephones on that floor were connected.

User interface

A user could select any available telephone line by pressing the appropriate pickup key and taking the handset off-hook. While on a telephone call, a user could place the call on hold by pressing the hold button, which also released the depressed line button mechanically, enabling the user to select another line for placing a call.

A user might have a set with just a few lines available, while the system attendant or receptionist might have a set wired for many more lines so that they could monitor the status of all lines simultaneously.

Key telephone systems also supported manual buzzers, intercom lines (with or without selective ringing), music on hold, and other features. The features were provided on a line-by-line basis by the selection of particular Key Telephone Units (KTUs) plugged into a pre-wired backplane in the central control unit.

Optional components of the 1A2 could also provide a function called 'I-Hold,' where a call could only be retrieved off hold at the phone that originally placed the line in the hold mode. The cadence of the 'I-Hold' lamp signal was steady illumination punctuated by a series of rapid blinks (produced by a module called a 'flutter generator') every couple of seconds.

Unlike most later electronic key systems or PBXs, 1A2 systems remain partially functional in the event of a local power failure. The telephones may still be used to make and receive calls when the central office is available, but the system is unable to provide visual or audible supervision, as well as hold functions and intercom services during power outages. Central-office powered ringers continue to function and by designating one telephone ringer per line it is possible to identify the line that is ringing.

Audible supervision

Audible signals, most often from ringers or buzzers, could be handled several ways. The ringer in a specific telephone set could be hardwired to one specific phone line. This had the advantage that the phone would ring any time a call came in on that specific line, even during a local power failure, but it also had the disadvantage of limiting ringing to that one line. No other lines could be connected to that ringer.

Another method, sometimes known as common audible, utilizes the internal circuitry of the KSU power supply, and circuitry in the individual key telephone units serving each line, to provide a separate and locally generated ringing signal for each phone line. This has the advantage that the ringing signal for any given line may be routed to any phone, or combinations of phones, but it also had the disadvantage of being non-functional during a local power outage.

A combination of these methods was possible. A set of relays were continuously powered by the power supply. The common-audible ringing signals from the KSU would run through the energized relays to certain phones that would also ring if there was a power failure. The phone lines that terminated at the KSU were also terminated at these relays and in the event of a power failure, the relays would de-energize and switch the phone lines to the ringers of selected phones.

Buzzers were not usually designed to accommodate the 90-110 volt, 20–30 Hz ringing signal used by telephone ringers. Instead, they usually operated on low-voltage AC (10-18 volts) supplied by the power supply.

Visual supervision

The buttons on telephone sets were transparent to provide visual signals furnished by lamps installed underneath the buttons in the telephone set. This permitted the user to instantly determine the status of the telephone lines available at the set:

See also

Related Research Articles

Telephone switchboard

Throughout the 20th century, telephone switchboards were devices used to connect circuits of telephones to establish telephone calls between users or other switchboards. The switchboard was an essential component of a manual telephone exchange, and was operated by switchboard operators who used electrical cords or switches to establish the connections.

Telephone Telecommunications device

A telephone is a telecommunications device that permits two or more users to conduct a conversation when they are too far apart to be heard directly. A telephone converts sound, typically and most efficiently the human voice, into electronic signals that are transmitted via cables and other communication channels to another telephone which reproduces the sound to the receiving user. The term is derived from Greek: τῆλε and φωνή, together meaning distant voice. A common short form of the term is phone, which came into use almost immediately after the first patent was issued.

In telephony, ringdown is a method of signaling an operator in which telephone ringing current is sent over the line to operate a lamp or cause the operation of a self-locking relay known as a drop.

A ringtone, ring tone or ring is the sound made by a telephone to indicate an incoming call. Originally referring to and made by the electromechanical striking of bells, the term now refers to any sound on any device alerting of a new incoming call—up to and including recordings of original telephone bells.

Trimline telephone Series of telephones produced by Western Electric

The Trimline telephone is a series of telephones produced by Western Electric, the manufacturing unit of the Bell System, and first introduced in 1965. It was designed by Henry Dreyfuss Associates under the project direction of Donald Genaro; the firm had designed all previous desktop telephone models for the American Telephone & Telegraph conglomerate.

Registered jack Telecommunication network interface

A registered jack (RJ) is a standardized telecommunication network interface for connecting voice and data equipment to a service provided by a local exchange carrier or long distance carrier. Registration interfaces were first defined in the Universal Service Ordering Code (USOC) system of the Bell System in the United States for complying with the registration program for customer-supplied telephone equipment mandated by the Federal Communications Commission (FCC) in the 1970s. They were subsequently codified in title 47 of the Code of Federal Regulations Part 68. Registered Jack connections began to see use after their invention in 1973 by Bell Labs. The specification includes physical construction, wiring, and signal semantics. Accordingly, registered jacks are primarily named by the letters RJ, followed by two digits that express the type. Additional letter suffixes indicate minor variations. For example, RJ11, RJ14, and RJ25 are the most commonly used interfaces for telephone connections for one-, two-, and three-line service, respectively. Although these standards are legal definitions in the United States, some interfaces are used worldwide.

A ringback number is a telephone number for a telephone line that automatically calls the line that the call was placed from, after the caller has hung up. The typical use of this facility is by telephone company technicians for testing a new installation or for trouble-shooting.

Telephone jack and plug Connectors for wiring of telephone equipment

A telephone jack and a telephone plug are electrical connectors for connecting a telephone set or other telecommunications apparatus to the telephone wiring inside a building, establishing a connection to a telephone network. The plug is inserted into its counterpart, the jack, which is commonly affixed to a wall or baseboard. The standards for telephone jacks and plugs vary from country to country, though the 6P2C style modular plug has become by far the most common type.

Doorbell

A doorbell is a signaling device typically placed near a door to a building's entrance. When a visitor presses a button the bell rings inside the building, alerting the occupant to the presence of the visitor. Although the first doorbells were mechanical, activated by pulling a cord connected to a bell, modern doorbells are electric, operated by a pushbutton switch. Modern doorbells often incorporate intercoms and miniature video cameras to increase security.

Business telephone system Multiline telephone system typically used in business environments

A business telephone system is a multiline telephone system typically used in business environments, encompassing systems ranging in technology from the key telephone system (KTS) to the private branch exchange (PBX).

Model 500 telephone

The Western Electric model 500 telephone series was the standard domestic desk telephone set issued by the Bell System in North America from 1950 through the 1984 Bell System divestiture. Millions of model 500-series phones were produced and were present in most homes in North America. Many are still in use today because of their durability and ample availability. Its modular construction compared to previous types simplified manufacture and repair, and facilitated a large number of variants with added features.

Intercom

An intercom, also called an intercommunication device, intercommunicator, or interphone, is a stand-alone voice communications system for use within a building or small collection of buildings, functioning independently of the public telephone network. Intercoms are generally mounted permanently in buildings and vehicles. Intercoms can incorporate connections to public address loudspeaker systems, walkie talkies, telephones, and to other intercom systems. Some intercom systems incorporate control of devices such as signal lights and door latches.

In residential telephony, an extension telephone is an additional telephone wired to the same telephone line as another. In middle 20th century telephone jargon, the first telephone on a line was a "Main Station" and subsequent ones "Extensions". Such extension phones allow making or receiving calls in different rooms, for example in a home, but any incoming call would ring all extensions and any one extension being in use would cause the line to be busy for all users. Some telephones intended for use as extensions have built in intercom features; a key telephone system for a small business may offer two to five lines, lamps indicating lines already in use, the ability to place calls on 'hold' and an intercom on each of the multiple extensions.

AT&T Merlin Corporate telephone system

AT&T Merlin is a corporate telephone system by American Telephone and Telegraph (AT&T) that was introduced in late 1983, when it was branded American Bell Merlin. After the breakup of AT&T in 1984, it was rebranded and later also supplied by Lucent and Avaya.

Modular connector Electrical connector commonly used in telephone and computer networks

A modular connector is a type of electrical connector for cords and cables of electronic devices and appliances, such as in computer networking, telecommunication equipment, and audio headsets.

The General Post Office (GPO) of the United Kingdom carried the sole responsibility for providing telecommunication services across the country with the exception of Hull. The GPO issued a range of telephone instruments to telephone service subscribers that were matched in function and performance to its telephone exchanges.

British telephone socket

British telephone sockets were introduced in their current plug and socket form on 19 November 1981 by British Telecom to allow subscribers to connect their own telephones. The connectors are specified in British Standard BS 6312. Electrical characteristics of the telephone interface are specified by individual network operators, e.g. in British Telecom's SIN 351. Electrical characteristics required of British telephones used to be specified in BS 6305.

Ringing is a telecommunication signal that causes a bell or other device to alert a telephone subscriber to an incoming telephone call. Historically, this entailed sending a high-voltage alternating current over the telephone line to a customer station which contained an electromagnetic bell. It is therefore also commonly referred to as power ringing, to distinguish it from another signal, audible ringing, or ringing tone, which is sent to the originating caller to indicate that the destination telephone is in fact ringing.

Telephone exchange Interconnects telephones for calls

A telephone exchange, telephone switch, or central office is a telecommunications system used in the public switched telephone network (PSTN) or in large enterprises. It interconnects telephone subscriber lines or virtual circuits of digital systems to establish telephone calls between subscribers.

Panel switch

The Panel Machine Switching System is a type of automatic telephone exchange for urban service that was used in the Bell System in the United States for seven decades. The first semi-mechanical types of this design were installed in 1915 in Newark, New Jersey, and the last were retired in the same city in 1983.

References

  1. S.E. Bush, Advances in the 1A2 Key Telephone System, Bell Laboratory Record, October 1970, pp. 259
  2. AT&T, Bell Systems Practices, Section 518-215-410, Service - 1A2 Key Telephone System Panels, 583 and 584-Type
  3. AT&T, Bell System Practices, Section 518-215-424
  4. AT&T, Bell System Practices, Section 167-466-101
  5. AT&T, Bell System Practices, Section 502-541-407