3-O-Methylfunicone

Last updated
3-O-Methylfunicone
3-O-methylfunicone.svg
Names
Preferred IUPAC name
Methyl 3,5-dimethoxy-2-{5-methoxy-4-oxo-6-[(1E)-prop-1-en-1-yl]-4H-pyran-3-carbonyl}benzoate
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
  • InChI=1S/C20H20O8/c1-6-7-14-19(26-4)18(22)13(10-28-14)17(21)16-12(20(23)27-5)8-11(24-2)9-15(16)25-3/h6-10H,1-5H3/b7-6+
    Key: WGLRJONCGNNMKL-VOTSOKGWSA-N
  • InChI=1/C20H20O8/c1-6-7-14-19(26-4)18(22)13(10-28-14)17(21)16-12(20(23)27-5)8-11(24-2)9-15(16)25-3/h6-10H,1-5H3/b7-6+
    Key: WGLRJONCGNNMKL-VOTSOKGWBV
  • C/C=C/c1c(c(=O)c(co1)C(=O)c2c(cc(cc2OC)OC)C(=O)OC)OC
Properties
C20H20O8
Molar mass 388.368 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

3-O-Methylfunicone is a chemical compound isolated from Penicillium pinophilum . [1] It inhibits the growth of phytopathogenic fungi. [2]

Related Research Articles

Penicillin Group of antibiotics derived from Penicillium fungi

Penicillins are a group of antibiotics originally obtained from Penicillium moulds, principally P. chrysogenum and P. rubens. Most penicillins in clinical use are chemically synthesised from naturally-produced penicillins. A number of natural penicillins have been discovered, but only two purified compounds are in clinical use: penicillin G and penicillin V. Penicillins were among the first medications to be effective against many bacterial infections caused by staphylococci and streptococci. They are members of the β-lactam antibiotics, which are some of the most powerful and successful achievements in modern science. They are still widely used today for different bacterial infections, though many types of bacteria have developed resistance following extensive use.

<i>Penicillium</i> Genus of fungi

Penicillium is a genus of ascomycetous fungi that is part of the mycobiome of many species and is of major importance in the natural environment, in food spoilage, and in food and drug production.

Mycophenolic acid

Mycophenolic acid (MPA) is an immunosuppressant medication used to prevent rejection following organ transplantation and to treat autoimmune conditions such as Crohn's disease and lupus. Specifically it is used following kidney, heart, and liver transplantation. It can be given by mouth or by injection into a vein. It comes as mycophenolate sodium and mycophenolate mofetil.

Platelet-activating factor, also known as PAF, PAF-acether or AGEPC (acetyl-glyceryl-ether-phosphorylcholine), is a potent phospholipid activator and mediator of many leukocyte functions, platelet aggregation and degranulation, inflammation, and anaphylaxis. It is also involved in changes to vascular permeability, the oxidative burst, chemotaxis of leukocytes, as well as augmentation of arachidonic acid metabolism in phagocytes.

<i>Penicillium roqueforti</i> Species of fungus

Penicillium roqueforti is a common saprotrophic fungus in the genus Penicillium. Widespread in nature, it can be isolated from soil, decaying organic matter, and plants.

Mevastatin

Mevastatin is a hypolipidemic agent that belongs to the statins class.

Penicillium aurantiogriseum is a plant pathogen infecting asparagus and strawberry. Chemical compounds isolated from Penicillium aurantiogriseum include anicequol and auranthine.

In enzymology, a feruloyl esterase (EC 3.1.1.73) is an enzyme that catalyzes the chemical reaction

Apoptotic DNA fragmentation Cleavage of DNA into tiny pieces during apoptosis

Apoptotic DNA fragmentation is a key feature of apoptosis, a type of programmed cell death. Apoptosis is characterized by the activation of endogenous endonucleases, particularly the caspase-3 activated DNase (CAD), with subsequent cleavage of nuclear DNA into internucleosomal fragments of roughly 180 base pairs (bp) and multiples thereof (360, 540 etc.). The apoptotic DNA fragmentation is being used as a marker of apoptosis and for identification of apoptotic cells either via the DNA laddering assay, the TUNEL assay, or the by detection of cells with fractional DNA content ("sub G1 cells") on DNA content frequency histograms e.g. as in the Nicoletti assay.

<i>Penicillium chrysogenum</i> Species of fungus

Penicillium chrysogenum is a species of fungus in the genus Penicillium. It is common in temperate and subtropical regions and can be found on salted food products, but it is mostly found in indoor environments, especially in damp or water-damaged buildings. It has been recognised as a species complex that includes P. notatum, P. meleagrinum, and P. cyaneofulvum, but molecular phylogeny established that it is a distinct species and that P. notatum is P. rubens. It has rarely been reported as a cause of human disease. It is the source of several β-lactam antibiotics, most significantly penicillin. Other secondary metabolites of P. chrysogenum include roquefortine C, meleagrin, chrysogine, 6-MSA YWA1/melanin, andrastatin A, fungisporin, secalonic acids, sorbicillin, and PR-toxin.

PCCG-4

PCCG-4 is a research drug which acts as a selective antagonist for the group II metabotropic glutamate receptors (mGluR2/3), with slight selectivity for mGluR2 although not sufficient to distinguish mGluR2 and mGluR3 responses from each other. It is used in research into the function of the group II metabotropic glutamate receptors.

Fungal isolates have been researched for decades. Because fungi often exist in thin mycelial monolayers, with no protective shell, immune system, and limited mobility, they have developed the ability to synthesize a variety of unusual compounds for survival. Researchers have discovered fungal isolates with anticancer, antimicrobial, immunomodulatory, and other bio-active properties. The first statins, β-Lactam antibiotics, as well as a few important antifungals, were discovered in fungi.

Medicinal fungi are fungi which contain metabolites or can be induced to produce metabolites through biotechnology to develop prescription drugs. Compounds successfully developed into drugs or are under research include antibiotics, anti-cancer drugs, cholesterol and ergosterol synthesis inhibitors, psychotropic drugs, immunosuppressants and fungicides.

Penicillium citrinum is an anamorph, mesophilic fungus species of the genus of Penicillium which produces tanzawaic acid A-D, ACC, Mevastatin, Quinocitrinine A, Quinocitrinine B, and nephrotoxic citrinin. Penicillium citrinum is often found on moldy citrus fruits and occasionally it occurs in tropical spices and cereals. This Penicillium species also causes mortality for the mosquito Culex quinquefasciatus. Because of its mesophilic character, Penicillium citrinum occurs worldwide. The first statin (Mevastatin) was 1970 isolated from this species.

Penicillium herquei is an anamorph, filamentous species of the genus of Penicillium which produces citreorosein, emodin, hualyzin, herquline B, janthinone, citrinin and duclauxin,.

Penicillium janczewskii is an anamorph and filamentous species of the genus of Penicillium which was isolated from the rhizosphere of Vernonia herbacea. Penicillium janczewskii produces griseofulvin

Penicillium paneum is a species of fungus in the genus Penicillium which can spoil cereal grains. Penicillium paneum produces 1-Octen-3-ol and penipanoid A, penipanoid B, penipanoid C, patulin and roquefortine C

Penicillium pinophilum is a species of fungus in the genus Penicillium which was isolated from a radio set in Papua New Guinea. Penicillium pinophilum produces 3-O-methylfunicone and mycophenolic acid

Penicillium thomii is an anamorph species of fungus in the genus Penicillium which was isolated from spoiled faba beans in Australia. Penicillium thomii produces hadicidine, 6-methoxymelline and penicillic acid

Penicillium velutinum is an anamorph species of fungus in the genus Penicillium which was isolated from soil in the United States. Penicillium velutinum produces verruculogen, verrucosidin, verruculotoxin, decalpenic acid, dehydroaltenusin, cyciooctasulfur, atrovenetinone, altenusin and penitrem A

References

  1. Buommino, E; Tirino, V; De Filippis, A; Silvestri, F; Nicoletti, R; Ciavatta, ML; Pirozzi, G; Tufano, MA (2011). "3-O-methylfunicone, from Penicillium pinophilum, is a selective inhibitor of breast cancer stem cells". Cell Proliferation. 44 (5): 401–9. doi:10.1111/j.1365-2184.2011.00766.x. PMC   6495666 . PMID   21951283.
  2. De Stefano, Salvatore; Nicoletti, Rosario; Milone, Alfredo; Zambardino, Salvatore (December 1999). "3-o-Methylfunicone, a fungitoxic metabolite produced by the fungus Penicillium pinophilum". Phytochemistry. 52 (8): 1399–1401. doi:10.1016/S0031-9422(99)00320-9.