4-Amino-3-hydrazino-5-mercapto-1,2,4-triazole

Last updated
4-Amino-3-hydrazino-5-mercapto-1,2,4-triazole
Thiourea2D.svg
Names
Preferred IUPAC name
4-Amino-5-hydrazinyl-2,4-dihydro-3H-1,2,4-triazole-3-thione
Other names
Purpald; AHMT; 1,2,4-Triazolidin-3-one, 4-amino-5-thioxo-, hydrazone (9CI); 4H-1,2,4-Triazole-3-thiol, 4-amino-5-hydrazino- (6CI,7CI)
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.015.578 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C2H6N6S/c3-5-1-6-7-2(9)8(1)4/h3-4H2,(H,5,6)(H,7,9)
    Key: RDIMQHBOTMWMJA-UHFFFAOYSA-N
  • c1(=S)[nH]nc(n1N)NN
Properties
C2H6N6S
Molar mass 146.17
Appearancewhite solid
Density 1.69 g/cm3
Melting point 228 °C (442 °F; 501 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

4-Amino-3-hydrazino-5-mercapto-1,2,4-triazole is an organic compound with the formula SC2N3H(NH2)(N2H3). The compound consists of a 1,2,4-triazole heterocycle with three functional groups: amine, thioamide and hydrazyl. X-ray crystallography shows that this molecule is polar but with a C=S double bond. It is prepared by the reaction of hydrazine with thiourea: [1]

2 SC(NH2)2 + 3 N2H4 → SC2N3H(NH2)(N2H3) + 4 NH3 + H2S

The compound has been used as a reagent for the colorimetric detection of aldehydes. [2]

Related Research Articles

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.

<span class="mw-page-title-main">Hydrazone</span> Organic compounds - Hydrazones

Hydrazones are a class of organic compounds with the structure R1R2C=N−NH2. They are related to ketones and aldehydes by the replacement of the oxygen =O with the =N−NH2 functional group. They are formed usually by the action of hydrazine on ketones or aldehydes.

An ylide or ylid is a neutral dipolar molecule containing a formally negatively charged atom (usually a carbanion) directly attached to a heteroatom with a formal positive charge (usually nitrogen, phosphorus or sulfur), and in which both atoms have full octets of electrons. The result can be viewed as a structure in which two adjacent atoms are connected by both a covalent and an ionic bond; normally written X+–Y. Ylides are thus 1,2-dipolar compounds, and a subclass of zwitterions. They appear in organic chemistry as reagents or reactive intermediates.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group. The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.

<span class="mw-page-title-main">Imidazole</span> Chemical compound

Imidazole (ImH) is an organic compound with the formula C3N2H4. It is a white or colourless solid that is soluble in water, producing a mildly alkaline solution. In chemistry, it is an aromatic heterocycle, classified as a diazole, and has non-adjacent nitrogen atoms in meta-substitution.

Dimethylformamide is an organic compound with the formula (CH3)2NC(O)H. Commonly abbreviated as DMF (although this initialism is sometimes used for dimethylfuran, or dimethyl fumarate), this colourless liquid is miscible with water and the majority of organic liquids. DMF is a common solvent for chemical reactions. Dimethylformamide is odorless, but technical-grade or degraded samples often have a fishy smell due to impurity of dimethylamine. Dimethylamine degradation impurities can be removed by sparging samples with an inert gas such as argon or by sonicating the samples under reduced pressure. As its name indicates, it is structurally related to formamide, having two methyl groups in the place of the two hydrogens. DMF is a polar (hydrophilic) aprotic solvent with a high boiling point. It facilitates reactions that follow polar mechanisms, such as SN2 reactions.

<span class="mw-page-title-main">Tollens' reagent</span> Chemical reagent used to distinguish between aldehydes and ketones

Tollens' reagent is a chemical reagent used to distinguish between aldehydes and ketones along with some alpha-hydroxy ketones which can tautomerize into aldehydes. The reagent consists of a solution of silver nitrate, ammonium hydroxide and some sodium hydroxide. It was named after its discoverer, the German chemist Bernhard Tollens. A positive test with Tollens' reagent is indicated by the precipitation of elemental silver, often producing a characteristic "silver mirror" on the inner surface of the reaction vessel.

<span class="mw-page-title-main">Pyridinium chlorochromate</span> Chemical compound

Pyridinium chlorochromate (PCC) is a yellow-orange salt with the formula [C5H5NH]+[CrO3Cl]. It is a reagent in organic synthesis used primarily for oxidation of alcohols to form carbonyls. A variety of related compounds are known with similar reactivity. PCC offers the advantage of the selective oxidation of alcohols to aldehydes or ketones, whereas many other reagents are less selective.

<span class="mw-page-title-main">Thiourea</span> Organosulfur compound (S=C(NH2)2)

Thiourea is an organosulfur compound with the formula SC(NH2)2 and the structure H2N−C(=S)−NH2. It is structurally similar to urea, except that the oxygen atom is replaced by a sulfur atom ; however, the properties of urea and thiourea differ significantly.

<span class="mw-page-title-main">Iminium</span> Polyatomic ion of the form >C=N< and charge +1

In organic chemistry, an iminium cation is a polyatomic ion with the general structure [R1R2C=NR3R4]+. They are common in synthetic chemistry and biology.

<span class="mw-page-title-main">Azine</span> Chemical compound

Azines are a functional class of organic compounds with the connectivity RR'C=N-N=CRR'. These compounds are the product of the condensation of hydrazine with ketones and aldehydes, although in practice they are often made by alternative routes. Ketazines are azines derived from ketones. For example, acetone azine is the simplest ketazine. Aldazines are azines derived from aldehydes.

<span class="mw-page-title-main">Weinreb ketone synthesis</span> Chemical reaction

The Weinreb–Nahm ketone synthesis is a chemical reaction used in organic chemistry to make carbon–carbon bonds. It was discovered in 1981 by Steven M. Weinreb and Steven Nahm as a method to synthesize ketones. The original reaction involved two subsequent nucleophilic acyl substitutions: the conversion of an acid chloride with N,O-Dimethylhydroxylamine, to form a Weinreb–Nahm amide, and subsequent treatment of this species with an organometallic reagent such as a Grignard reagent or organolithium reagent. Nahm and Weinreb also reported the synthesis of aldehydes by reduction of the amide with an excess of lithium aluminum hydride.

<span class="mw-page-title-main">Thioureas</span> Organosulfur compounds with an >NC(=S)N< structure

In organic chemistry, thioureas are members of a family of organosulfur compounds with the formula S=C(NR2)2 and structure R2N−C(=S)−NR2. The parent member of this class of compounds is thiourea. The thiourea functional group has a planar S=CN2 core.

<span class="mw-page-title-main">Phenylglyoxal</span> Chemical compound

Phenylglyoxal is the organic compound with the formula C6H5C(O)C(O)H. It contains both an aldehyde and a ketone functional group. It is yellow liquid when anhydrous but readily forms a colorless crystalline hydrate. It has been used as a reagent to modify the amino acid, arginine. It has also been used to attach chemical payload (probes) to the amino acid citrulline and to peptides/proteins.

The reduction of nitro compounds are chemical reactions of wide interest in organic chemistry. The conversion can be effected by many reagents. The nitro group was one of the first functional groups to be reduced. Alkyl and aryl nitro compounds behave differently. Most useful is the reduction of aryl nitro compounds.

Bioconjugation is a chemical strategy to form a stable covalent link between two molecules, at least one of which is a biomolecule.

The Bucherer–Bergs reaction is the chemical reaction of carbonyl compounds or cyanohydrins with ammonium carbonate and potassium cyanide to give hydantoins. The reaction is named after Hans Theodor Bucherer.

Hydroxylamine-<i>O</i>-sulfonic acid Chemical compound

Hydroxylamine-O-sulfonic acid (HOSA) is the inorganic compound with molecular formula H3NO4S that is formed by the sulfonation of hydroxylamine with oleum. It is a white, water-soluble and hygroscopic, solid, commonly represented by the condensed structural formula H2NOSO3H, though it actually exists as a zwitterion and thus is more accurately represented as +H3NOSO3. It is used as a reagent for the introduction of amine groups (–NH2), for the conversion of aldehydes into nitriles and alicyclic ketones into lactams (cyclic amides), and for the synthesis of variety of nitrogen-containing heterocycles.

<span class="mw-page-title-main">Trimethylsilyl isothiocyanate</span> Chemical compound

Trimethylsilyl isothiocyanate (TMSNCS) is an organosilicon compound that contains an isothiocyanate whose nitrogen atom is covalently bonded to a trimethylsilyl group. The isothiocyanate group is an analog of the isocyanate group, but having a sulfur instead of oxygen.

References

  1. N. W. Isaacs and C. H. L. Kennard "Crystal structure of 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole" J. Chem. Soc. B, 1971, 1270-1273. doi : 10.1039/J29710001270
  2. Hopps, Harvey B. "Purpald: a Reagent that Turns Aldehydes Purple!" Aldrichimica Acta 2000, volume 33, pp. 28-30.