4-Phenyl-1,2,4-triazole-3,5-dione

Last updated
4-Phenyl-1,2,4-triazole-3,5-dione
PTAD.svg
PTAD 3D ball.png
Names
Preferred IUPAC name
4-Phenyl-3H-1,2,4-triazole-3,5(4H)-dione
Other names
PTAD
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.021.993 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C8H5N3O2/c12-7-9-10-8(13)11(7)6-4-2-1-3-5-6/h1-5H Yes check.svgY
    Key: ISULLEUFOQSBGY-UHFFFAOYSA-N Yes check.svgY
  • O=C2/N=N\C(=O)N2c1ccccc1
  • c1ccc(cc1)N2C(=O)N=NC2=O
Properties
C8H5N3O2
Molar mass 175.15
Appearancered solid
Melting point 165 °C (329 °F; 438 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

4-Phenyl-1,2,4-triazoline-3,5-dione (PTAD) is an azodicarbonyl compound. PTAD is one of the strongest dienophiles and reacts rapidly with dienes in Diels-Alder reactions. [1] The most prominent use of PTAD was the first synthesis of prismane in 1973. [2]

Synthesis

The compound was first synthesized in 1894 by Johannes Thiele and O. Stange. The oxidation of 4-Phenylurazol with lead tetroxide in sulfuric acid yielded small quantities of the substance. [3] It took until 1971 when a practical synthesis was published. The synthesis starts from hydrazine and diethyl carbonate. The product of this step is reacted with phenyl isocyanate and subsequently transformed to the 4-Phenylurazol. Cyclization and subsequent oxidation yields PTAD (6). [4]

Synthesis of PTAD Synthesis PTAD.svg
Synthesis of PTAD

Related Research Articles

Phenols Chemical compounds in which hydroxyl group is attached directly to an aromatic ring

In organic chemistry, phenols, sometimes called phenolics, are a class of chemical compounds consisting of one or more hydroxyl groups (—OH) bonded directly to an aromatic hydrocarbon group. The simplest is phenol, C
6
H
5
OH
. Phenolic compounds are classified as simple phenols or polyphenols based on the number of phenol units in the molecule.

Oxalyl chloride Chemical compound

Oxalyl chloride is an organic chemical compound with the formula (COCl)2. This colorless, sharp-smelling liquid, the diacyl chloride of oxalic acid, is a useful reagent in organic synthesis.

Simmons–Smith reaction

The Simmons–Smith reaction is an organic cheletropic reaction involving an organozinc carbenoid that reacts with an alkene to form a cyclopropane. It is named after Howard Ensign Simmons, Jr. and Ronald D. Smith. It uses a methylene free radical intermediate that is delivered to both carbons of the alkene simultaneously, therefore the configuration of the double bond is preserved in the product and the reaction is stereospecific.

Phosphorus trichloride Chemical compound

Phosphorus trichloride is a inorganic compound with the chemical formula PCl3. A colorless liquid when pure, it is an important industrial chemical, being used for the manufacture of phosphites and other organophosphorus compounds. It is toxic and reacts readily with water to release hydrogen chloride.

Triphenylphosphine Chemical compound

Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is widely used in the synthesis of organic and organometallic compounds. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.

Cyclooctatetraene Chemical compound

1,3,5,7-Cyclooctatetraene (COT) is an unsaturated derivative of cyclooctane, with the formula C8H8. It is also known as [8]annulene. This polyunsaturated hydrocarbon is a colorless to light yellow flammable liquid at room temperature. Because of its stoichiometric relationship to benzene, COT has been the subject of much research and some controversy.

(<i>E</i>)-Stilbene Chemical compound

(E)-Stilbene, commonly known as trans-stilbene, is an organic compound represented by the condensed structural formula C6H5CH=CHC6H5. Classified as a diarylethene, it features a central ethylene moiety with one phenyl group substituent on each end of the carbon–carbon double bond. It has an (E) stereochemistry, meaning that the phenyl groups are located on opposite sides of the double bond, the opposite of its geometric isomer, cis-stilbene. Trans-stilbene occurs as a white crystalline solid at room temperature and is highly soluble in organic solvents. It can be converted to cis-stilbene photochemically, and further reacted to produce phenanthrene.

Isatin Chemical compound

Isatin, also known as tribulin, is an organic compound derived from indole with formula C8H5NO2. The compound was first obtained by Otto Linné Erdman and Auguste Laurent in 1840 as a product from the oxidation of indigo dye by nitric acid and chromic acids.

1,4-Benzoquinone Chemical compound

1,4-Benzoquinone, commonly known as para-quinone, is a chemical compound with the formula C6H4O2. In a pure state, it forms bright-yellow crystals with a characteristic irritating odor, resembling that of chlorine, bleach, and hot plastic or formaldehyde. This six-membered ring compound is the oxidized derivative of 1,4-hydroquinone. The molecule is multifunctional: it exhibits properties of a ketone, being able to form oximes; an oxidant, forming the dihydroxy derivative; and an alkene, undergoing addition reactions, especially those typical for α,β-unsaturated ketones. 1,4-Benzoquinone is sensitive toward both strong mineral acids and alkali, which cause condensation and decomposition of the compound.

Thiophenol Chemical compound

Thiophenol is an organosulfur compound with the formula C6H5SH, sometimes abbreviated as PhSH. This foul-smelling colorless liquid is the simplest aromatic thiol. The chemical structures of thiophenol and its derivatives are analogous to phenols except the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring is replaced by a sulfur atom. The prefix thio- implies a sulfur-containing compound and when used before a root word name for a compound which would normally contain an oxygen atom, in the case of 'thiol' that the alcohol oxygen atom is replaced by a sulfur atom.

Favorskii rearrangement

The Favorskii rearrangement is principally a rearrangement of cyclopropanones and α-halo ketones that leads to carboxylic acid derivatives. In the case of cyclic α-halo ketones, the Favorskii rearrangement constitutes a ring contraction. This rearrangement takes place in the presence of a base, sometimes hydroxide, to yield a carboxylic acid but most of the time either an alkoxide base or an amine to yield an ester or an amide, respectively. α,α'-Dihaloketones eliminate HX under the reaction conditions to give α,β-unsaturated carbonyl compounds.

Dakin oxidation

The Dakin oxidation is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde or ketone reacts with hydrogen peroxide in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidized, and the hydrogen peroxide is reduced.

Heptacene Chemical compound

Heptacene is an organic compound and a polycyclic aromatic hydrocarbon and the seventh member of the acene or polyacene family of linear fused benzene rings. This compound has long been pursued by chemists because of its potential interest in electronic applications and was first synthesized but not cleanly isolated in 2006. Heptacene was finally fully characterized in bulk by researchers in Germany and the United States in 2017.

Bis(benzene)chromium Chemical compound

Bis(benzene)chromium is the organometallic compound with the formula Cr(η6-C6H6)2. It is sometimes called dibenzenechromium. The compound played an important role in the development of sandwich compounds in organometallic chemistry and is the prototypical complex containing two arene ligands.

Diphenyl disulfide Chemical compound

Diphenyl disulfide is the chemical compound with the formula (C6H5S)2. This colorless crystalline material is often abbreviated Ph2S2. It is one of the more commonly encountered organic disulfides in organic synthesis. Minor contamination by thiophenol is responsible for the disagreeable odour associated with this compound.

Diphenylketene Chemical compound

Diphenylketene is a chemical substance of the ketene family. Diphenylketene, like most disubstituted ketenes, is a red-orange oil at room temperature and pressure. Due to the successive double bonds in the ketene structure R1R2C=C=O, diphenyl ketene is a heterocumule. The most important reaction of diphenyl ketene is the [2+2] cycloaddition at C-C, C-N, C-O, and C-S multiple bonds.

Erlenmeyer–Plöchl azlactone and amino-acid synthesis

The Erlenmeyer–Plöchl azlactone and amino acid synthesis, named after Friedrich Gustav Carl Emil Erlenmeyer who partly discovered the reaction, is a series of chemical reactions which transform an N-acyl glycine to various other amino acids via an oxazolone.

Selenoxide elimination is a method for the chemical synthesis of alkenes from selenoxides. It is most commonly used to synthesize α,β-unsaturated carbonyl compounds from the corresponding saturated analogues. It is mechanistically related to the Cope reaction.

Iodane generally refers to any organic derivative of iodine. Without modifier, iodane is the systematic name for the parent hydride of iodine, HI. Thus, any organoiodine compound with general formula RI is a substituted iodane. However, as used in the context of organic synthesis, the term iodane more specifically refers to organoiodine compounds with nonstandard bond number, making this term a synonym for hypervalent iodine. These iodine compounds are hypervalent because the iodine atom formally contains more than the 8 electrons in the valence shell required for the octet rule. When iodine is ligated to an organic residue and electronegative ligands, hypervalent iodine compounds occur with a +3 oxidation number as iodine(III) or λ3-iodanes, or as a +5 oxidation number as iodine(V) or λ5-iodanes, or as a +7 oxidation number as iodine(VII) or λ7-iodanes.

Diethylphosphite Chemical compound

Diethylphosphite is the organophosphorus compound with the formula (C2H5O)2P(O)H. It is a popular reagent for generating other organophosphorus compounds, exploiting the high reactivity of the P-H bond. Diethylphosphite is a colorless liquid. The molecule is tetrahedral.

References

  1. Korobitsyna, I. K.; Khalikova, A. V.; Rodina, L. L.; Shusherina, N. P. (1983). "4-Phenyl-1,2,4-triazoline-3,5-dione in organic synthesis (review)". Chemistry of Heterocyclic Compounds. 19 (2): 117–136. doi:10.1007/BF00506417. S2CID   98081187.
  2. Katz T. J., Acton N. (1973). "Synthesis of Prismane". Journal of the American Chemical Society . 95 (8): 2738–2739. doi:10.1021/ja00789a084.
  3. Thiele, J.; Stange, O. (1894). "Ueber Semicarbazid". Justus Liebigs Annalen der Chemie. 283 (1–2): 1–43. doi:10.1002/jlac.18942830102.
  4. Cookson, R. C. (1971). "4-Phenyl-1,2,4-triazole-3,5-dione" (PDF). Organic Syntheses: 121. doi:10.1002/0471264180.os051.30. ISBN   0471264229. Also Organic Syntheses, Coll. Vol. 6, p.936 (1988)